×

The local cyclicity problem: Melnikov method using Lyapunov constants. (English) Zbl 1504.34082

C. Chicone and M. Jacobs [J. Differ. Equations 91, No. 2, 268–326 (1991; Zbl 0733.34045)] proved the equivalence between Lyapunov constants and the first Melnikov function for determining the number of limit cycles bifurcating from the quadratic centers. In the paper, the authors generalize the equivalence for polynomial systems of any degree and use the equivalence to update the local cyclicity of monodromic equilibrium points for polynomial systems of degree \(6\), i.e., \(\mathcal{M}(6)\geq 44\). In addition, the authors use averaging theory to prove that the local cyclicity for piecewise polynomial vector fields of degree \(4\) and \(5\) satisfies \(\mathcal{M}^{c}_{p}(4)\geq 43 \) and \(\mathcal{M}^{c}_{p}(5)\geq 65 \), respectively.

MSC:

34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34E10 Perturbations, asymptotics of solutions to ordinary differential equations

Citations:

Zbl 0733.34045
Full Text: DOI

References:

[1] Acary, V., Bonnefon, O. and Brogliato, B., Nonsmooth modeling and simulation for switched circuits, Lecture Notes in Electrical Engineering, Volume 69 (Springer, Dordrecht, 2011). · Zbl 1208.94003
[2] Andronov, A. A., Vitt, A. A. and Khaikin, S. E., Theory of oscillators (Pergamon Press, Oxford-New York-Toronto, Ontario, 1966). · Zbl 0188.56304
[3] Andronov, A. A., Leontovich, E. A., Gordon, I. I. and Maĭer, A. G., Theory of bifurcations of dynamic systems on a plane (Halsted Press [A division of John Wiley & Sons], New York-Toronto, Ontario, 1973). Israel Program for Scientific Translations, Jerusalem-London. · Zbl 0282.34022
[4] Arnol’d, V. I., Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields, Funct. Anal. Appl. 11(2) (Apr 1977), 85-92. · Zbl 0411.58013
[5] Bautin, N. N., On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, American Math. Soc. Translation1954(100) (1954), 19. · Zbl 0059.08201
[6] Di Bernardo, M., Budd, C. J., Champneys, A. R. and Kowalczyk, P., Piecewise-smooth dynamical systems, Applied Mathematical Sciences, Volume 163 (Springer-Verlag London, Ltd., London, 2008). Theory and applications. · Zbl 1146.37003
[7] Blows, N. and Lloyd, T. R., The number of limit cycles of certain polynomial differential equations, Proc. Roy. Soc. Edinburgh Sect. A98(3-4) (1984), 215-239. · Zbl 0603.34020
[8] Bondar, Y. L. and Sadovskiĭ, A. P., On a theorem of Zoladek, Differ. Uravn. 44(2) (2008), 263-265. · Zbl 1186.34042
[9] Buică, A., On the equivalence of the Melnikov functions method and the averaging method, Qual. Theory Dyn. Syst. 16(3) (2017), 547-560. · Zbl 1392.34052
[10] Buică, A. and Llibre, J., Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math. 128(1) (2004), 7-22. · Zbl 1055.34086
[11] Buzzi, C., Pessoa, C. and Torregrosa, J., Piecewise linear perturbations of a linear center, Discrete Contin. Dyn. Syst. 33(9) (2013), 3915-3936. · Zbl 1312.37037
[12] Castillo, J., Llibre, J. and Verduzco, F., The pseudo-Hopf bifurcation for planar discontinuous piecewise linear differential systems, Nonlinear Dynam. 90(3) (2017), 1829-1840. · Zbl 1380.34030
[13] Chicone, C. and Jacobs, M., Bifurcation of limit cycles from quadratic isochrones, J. Diff. Eq. 91(2) (1991), 268-326. · Zbl 0733.34045
[14] Christopher, C., Estimating limit cycle bifurcations from centers. In Differential equations with symbolic computation, Trends Math., pp. 23-35. (Birkhäuser, Basel, 2005). · Zbl 1108.34025
[15] Cima, A., Gasull, A., Mañosa, V. and Mañosas, F., Algebraic properties of the Lyapunov and period constants, Rocky Mountain J. Math. 27(2) (1997), 471-501. · Zbl 0911.34025
[16] Cima, A., Gasull, A. and Mañosas, F., A note on the Lyapunov and period constants, Qual. Theory Dyn. Syst. 19 (2020), 4. · Zbl 1447.34030
[17] Coombes, S., Neuronal networks with gap junctions: a study of piecewise linear planar neuron models, SIAM J. Appl. Dyn. Syst. 7(3) (2008), 1101-1129. · Zbl 1159.92008
[18] Da Cruz, L. P., Novaes, D. D. and Torregrosa, J., New lower bound for the Hilbert number in piecewise quadratic differential systems, J. Diff. Eq. 266(7) (2019), 4170-4203. · Zbl 1435.37075
[19] Fatou, P., Sur le mouvement d’un système soumis à des forces à courte période, Bull. Soc. Math. France56 (1928), 98-139. · JFM 54.0834.01
[20] Filippov, A. F., Differential equations with discontinuous righthand sides, Mathematics and its Applications (Soviet Series), Volume 18 (Kluwer Academic Publishers Group, Dordrecht, 1988). · Zbl 0664.34001
[21] Freire, E., Ponce, E. and Torres, F., Canonical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst. 11(1) (2012), 181-211. · Zbl 1242.34020
[22] Freire, E., Ponce, E. and Torres, F., The discontinuous matching of two planar linear foci can have three nested crossing limit cycles, Publ. Mat. 58(suppl.) (2014), 221-253. · Zbl 1343.34077
[23] Freire, E., Ponce, E., Torregrosa, J. and Torres, F., Limit cycles from a monodromic infinity in planar piecewise linear systems, J. Math. Anal. Appl. 496(2) (2021), 124818. · Zbl 1477.34059
[24] Giannakopoulos, F. and Pliete, K., Planar systems of piecewise linear differential equations with a line of discontinuity, Nonlinearity14(6) (2001), 1611-1632. · Zbl 1003.34009
[25] Giné, J., Higher order limit cycle bifurcations from non-degenerate centers, Appl. Math. Comput. 218(17) (2012), 8853-8860. · Zbl 1255.34041
[26] Giné, J., Limit cycle bifurcations from a non-degenerate center, Appl. Math. Comput. 218(9) (2012), 4703-4709. · Zbl 1391.34073
[27] Giné, J., Gouveia, L. F. S. and Torregrosa, J., Lower bounds for the local cyclicity for families of centers, J. Diff. Eq. 275 (2021), 309-331. · Zbl 1467.34034
[28] Gouveia, L. F. S. and Torregrosa, J., 24 crossing limit cycles in only one nest for piecewise cubic systems, Appl. Math. Lett. 103 (2020), 106189. · Zbl 1511.34044
[29] Gouveia, L. F. S. and Torregrosa, J., Local cyclicity in low degree planar piecewise polynomial vector fields, Nonlinear Anal. Real World Appl. 60 (2021), 103278. · Zbl 1477.34060
[30] Gouveia, L. F. S. and Torregrosa, J., Lower bounds for the local cyclicity of centers using high order developments and parallelization, J. Diff. Eq. 271 (2021), 447-479. · Zbl 1460.34046
[31] Han, M., Bifurcation theory of limit cycles (Science Press Beijing, Alpha Science International Ltd, Beijing, Oxford, 2017). · Zbl 1415.34001
[32] Han, M. and Yang, J., The maximum number of zeros of functions with parameters and application to differential equations, J. Nonlinear Model. Anal. 3(1) (2021), 13-34.
[33] Han, M. and Yu, P., Normal forms, Melnikov functions and bifurcations of limit cycles, Applied Mathematical Sciences, Volume 181 (Springer, London, 2012). · Zbl 1252.37002
[34] Han, M. and Zhang, W., On Hopf bifurcation in non-smooth planar systems, J. Diff. Equ. 248(9) (2010), 2399-2416. · Zbl 1198.34059
[35] Han, M., Romanovski, V. G. and Zhang, X., Equivalence of the Melnikov function method and the averaging method, Qual. Theory Dyn. Syst. 15(2) (2016), 471-479. · Zbl 1377.34056
[36] Han, M., Sheng, L. and Zhang, X., Bifurcation theory for finitely smooth planar autonomous differential systems, J. Differ. Eq. 264 (2018), 3596-3618. · Zbl 1410.34116
[37] Huan, S.-M. and Yang, X.-S., On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst. 32(6) (2012), 2147-2164. · Zbl 1248.34033
[38] Ilyashenko, Y., Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc. (N.S.)39(3) (2002), 301-354. · Zbl 1004.34017
[39] Itikawa, J., Llibre, J. and Oliveira, R., Private Communication.
[40] Kuznetsov, Y. A., Elements of applied bifurcation theory, Applied Mathematical Sciences, Volume 112, 3rd edn. (Springer-Verlag, New York, 2004). · Zbl 1082.37002
[41] Leine, R. I. and Van Campen, D. H., Discontinuous bifurcations of periodic solutions, Math. Comput. Model. 36(3) (2002), 259-273. Mathematical modelling of nonlinear systems (Leeds, 1999). · Zbl 1046.34016
[42] Liang, H. and Torregrosa, J., Parallelization of the Lyapunov constants and cyclicity for centers of planar polynomial vector fields, J. Diff. Equ. 259(11) (2015), 6494-6509. · Zbl 1334.34070
[43] Llibre, J. and Ponce, E., Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms19(3) (2012), 325-335. · Zbl 1268.34061
[44] Llibre, J. and Tang, Y., Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center, Discrete Contin. Dyn. Syst. Ser. B24(4) (2019), 1769-1784. · Zbl 1478.34040
[45] Llibre, J., Novaes, D. D. and Teixeira, M. A., Corrigendum: Higher order averaging theory for finding periodic solutions via Brouwer degree (2014 Nonlinearity 27, 563), Nonlinearity27(9) (2014), 2417. · Zbl 1304.34079
[46] Llibre, J., Novaes, D. D. and Teixeira, M. A., Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity27(3) (2014), 563-583. · Zbl 1291.34077
[47] Llibre, J., Mereu, A. C. and Novaes, D. D., Averaging theory for discontinuous piecewise differential systems, J. Diff. Equ. 258(11) (2015), 4007-4032. · Zbl 1347.37097
[48] Perko, L., Differential equations and dynamical systems, Texts in Applied Mathematics, Volume 7, 3rd edn. (Springer-Verlag, New York, 2001). · Zbl 0973.34001
[49] Roussarie, R., Bifurcation of planar vector fields and Hilbert’s sixteenth problem, Progress in Mathematics, Volume 164 (Birkhäuser Verlag, Basel, 1998). · Zbl 0898.58039
[50] Sanders, J. A. and Verhulst, F., Averaging methods in nonlinear dynamical systems, Applied Mathematical Sciences, Volume 59. (Springer-Verlag, New York, 1985). · Zbl 0586.34040
[51] Sibirskiĭ, K. S., On the number of limit cycles in the neighborhood of a singular point, Differencial’nye Uravnenija1 (1965), 53-66. · Zbl 0196.35702
[52] Verhulst, F., Nonlinear differential equations and dynamical systems, 2nd ed., Universitext (Springer-Verlag, Berlin, 1996). · Zbl 0854.34002
[53] Yu, P. and Tian, Y., Twelve limit cycles around a singular point in a planar cubic-degree polynomial system, Commun. Nonlinear Sci. Numer. Simul. 19(8) (2014), 2690-2705. · Zbl 1510.37083
[54] Żoła̧Dek, H., On certain generalization of the Bautin’s theorem, Nonlinearity7(1) (1994), 233-279. · Zbl 0838.34035
[55] Żoła̧Dek, H., Eleven small limit cycles in a cubic vector field, Nonlinearity8(5) (1995), 843-860. · Zbl 0837.34042
[56] Żoła̧Dek, H., Remarks on: The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal. 8(2) (1996), 335-342. [Topol. Methods Nonlinear Anal. 4 (1994), no. 1, 79-136]. · Zbl 0820.34016
[57] Żoła̧Dek, H., The CD45 case revisited. In Mathematical Sciences with Multidisciplinary Applications, pp. 595-625 (Springer International Publishing, Cham, 2016). · Zbl 1365.34089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.