×

Limit cycle bifurcations from a non-degenerate center. (English) Zbl 1391.34073

Summary: In this work we discuss the computational problems which appear in the computation of the Poincaré-Liapunov constants and the determination of their functionally independent number. Moreover, we calculate the minimum number of Bautin ideal generators which give the number of small limit cycles under certain hypothesis about the generators. In particular, we consider polynomial systems of the form \(\dot x = -y +P_n(x,y), \dot y=x+Q_n(x,y)\), where \(P_{n}\) and \(Q_{n}\) are a homogeneous polynomial of degree n. We use center bifurcation rather than multiple Hopf bifurcations, used a previous work [the author and J. Mallol, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 12, e132–e137 (2009; Zbl 1238.34074)], to estimate the cyclicity of a unique singular point of focus-center type for \(n = 4, 5, 6, 7\) and compare with the results given by the conjecture presented in [the author, Appl. Math. Comput. 188, No. 2, 1870–1877 (2007; Zbl 1124.34018)].

MSC:

34C23 Bifurcation theory for ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Agrawal, M.; Kayal, N.; Saxena, N., Primes is in \(P\), Ann. Math., 160, 2, 781-793 (2004) · Zbl 1071.11070
[2] Bautin, N. N., On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl., 100, 397-413 (1954) · Zbl 0059.08201
[3] Blows, T. R.; Lloyd, N. G., The number of limit cycles of certain polynomial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 98, 3-4, 215-239 (1984) · Zbl 0603.34020
[4] Chavarriga, J.; Giné, J., Integrability of a linear center perturbed by fourth degree homogeneous polynomial, Publ. Mat., 40, 1, 21-39 (1996) · Zbl 0851.34001
[5] Chavarriga, J.; Giné, J., Integrability of a linear center perturbed by a fifth degree homogeneous polynomial, Publ. Mat., 41, 2, 335-356 (1997) · Zbl 0897.34030
[6] Chavarriga, J.; Giné, J.; Grau, M., Integrable systems via polynomial inverse integrating factors, Bull. Sci. Math., 126, 4, 315-331 (2002) · Zbl 1016.34026
[7] Christopher, C. J., Estimating limit cycle bifurcations from centers, Differential Equations with Symbolic Computation. Differential Equations with Symbolic Computation, Trends Math. (2005), Birkhuser: Birkhuser Basel, pp. 23-35 · Zbl 1108.34025
[8] Christopher, C. J.; Lloyd, N. G., Polynomial systems: a lower bound for the Hilbert numbers, Proc. Roy. Soc. London Ser. A, 45, 1938, 219-224 (1995) · Zbl 0839.34033
[9] Cox, D.; Little, J.; O’Shea, D., Ideals, Varieties and Algorithms. Ideals, Varieties and Algorithms, Undergraduate Texts Math. (1992), Springer-Verlag · Zbl 0756.13017
[10] Dulac, H., Détermination et intégration d’une certain classe d’équations différentielle ayant pour point singulier un center, Bull. Sci. Math. Sér., 32, 2, 230-252 (1908) · JFM 39.0374.01
[11] Frommer, M., Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmheitsstellen, Math. Ann., 109, 395-424 (1934) · JFM 60.1094.01
[12] Kapteyn, W., On the midpoints of integral curves of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland, 19, 1446-1457 (1911), Dutch · JFM 42.0333.01
[13] Kapteyn, W., New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 21, 27-33 (1912), Dutch · JFM 26.0665.03
[14] Farr, W. W.; Li, C.; Labouriau, I. S.; Langford, W. F., Degenerate Hopf-bifurcation formulas and Hilbert’s 16th problem, SIAM J. Math. Anal., 20, 13-29 (1989) · Zbl 0682.58035
[15] Françoise, J. P., Successive derivatives of a first return map, application to the study of quadratic vector fields, Ergodic Theor. Dyn. Syst., 16, 87-96 (1996) · Zbl 0852.34008
[16] Giné, J., Polynomial first integrals via the Poincaré series, J. Comput. Appl. Math., 184, 2, 428-441 (2005) · Zbl 1085.34001
[17] Giné, J., The center problem for a linear center perturbed by homogeneous polynomials, Acta Math. Sin., 22, 6, 1613-1620 (2006) · Zbl 1124.34326
[18] Giné, J., On the number of algebraically independent Poincaré-Liapunov constants, Appl. Math. Comput., 188, 2, 1870-1877 (2007) · Zbl 1124.34018
[19] Giné, J.; Mallol, J., Minimum number of ideal generators for a linear center perturbed by homogeneous polynomials, Nonlinear Anal., 71, 12, e132-e137 (2009) · Zbl 1238.34074
[20] Giné, J.; Romanovski, V. G., Linearizability conditions for Lotka-Volterra planar complex cubic systems, J. Phys. A, 42, 22, 225206 (2009) · Zbl 1188.34115
[21] Giné, J.; Romanovski, V. G., Integrability conditions for Lotka-Volterra planar complex quintic systems, Nonlinear Anal. Real World Appl., 11, 3, 2100-2105 (2010) · Zbl 1194.34003
[22] Giné, J.; Santallusia, X., On the Poincaré-Liapunov constants and the Poincaré series, Appl. Math. (Warsaw), 28, 1, 17-30 (2001) · Zbl 1022.34028
[23] Giné, J.; Santallusia, X., Implementation of a new algorithm of computation of the Poincaré-Liapunov constants, J. Comput. Appl. Math., 166, 2, 465-476 (2004) · Zbl 1051.65125
[24] Bin Li, Ji; Ming Huang, Qi, Bifurcation of limit cycles forming compound eyes in the cubic systems, Chinese Ann. Math. Ser. B, 8, 4, 391-403 (1987) · Zbl 0658.34020
[25] Liapunov, M. A., Problème général de la stabilité du mouvement. Problème général de la stabilité du mouvement, Ann. Math. Stud., 17 (1947), Pricenton University Press · Zbl 0031.18403
[26] Lloyd, N. G.; Pearson, J. M., REDUCE and the bifurcation of limit cycles, J. Symbolic Comput., 9, 215-224 (1990) · Zbl 0702.68072
[27] Lloyd, N. G.; Pearson, J. M., Computing center conditions for certain cubic systems, J. Comput. Appl. Math., 40, 323-336 (1992) · Zbl 0754.65072
[28] Pearson, J. M.; Lloyd, N. G.; Christopher, C. J., Algorithmic derivation of centre conditions, SIAM Rev., 38, 619-636 (1996) · Zbl 0876.34033
[29] Poincaré, H., Oeuvres de Henri Poincaré, vol. I (1951), Gauthier-Villars: Gauthier-Villars Paris, pp. 3-84 · JFM 14.0666.01
[30] Sibirskii, K. S., On the number of limit cycles in the neighborhood of a singular point, Differ. Eqn., 1, 36-47 (1965)
[31] Smale, S., Mathematical problems for the next century, Math. Intelligencer, 20, 7-15 (1998) · Zbl 0947.01011
[32] Songling, Shi, A method of constructing cycles without contact around a weak focus, J. Differ. Eqn., 41, 301-312 (1981) · Zbl 0442.34029
[33] Songling, Shi, On the structure of Poincaré-Lyapunov constants for the weak focus of polynomial vector fields, J. Differ. Eqn., 52, 52-57 (1984) · Zbl 0534.34059
[34] ŻoŁa¸dek, H., On certain generalization of Bautin’s theorem, Nonlinearity, 7, 273-279 (1994) · Zbl 0838.34035
[35] ŻoŁa¸dek, H., Eleven small limit cycles in a cubic vector field, Nonlinearity, 8, 843-860 (1995) · Zbl 0837.34042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.