×

A multipoint flux approximation with a diamond stencil and a non-linear defect correction strategy for the numerical solution of steady state diffusion problems in heterogeneous and anisotropic media satisfying the discrete maximum principle. (English) Zbl 1504.65236

Summary: In the present paper, we solve the steady state diffusion equation in 3D domains by means of a cell-centered finite volume method that uses a Multipoint Flux Approximation with a Diamond Stencil and a Non-Linear defect correction strategy (MPFA-DNL) to guarantee the Discrete Maximum Principle (DMP). Our formulation is based in the fact that the flux of MPFA methods can be split into two different parts: a Two Point Flux Approximation (TPFA) component and the Cross-Diffusion Terms (CDT). In the linear MPFA-D method, this split is particularly simple since it lies at the core of the original method construction. In this context, we introduce a non-linear defect correction, aiming to mitigate, whenever necessary, the contributions from the CDT, avoiding, this way, spurious oscillations and DMP violations. Our new MPFA-DNL scheme is locally conservative and capable of dealing with arbitrary anisotropic diffusion tensors and unstructured meshes, without harming the second order convergence rates of the original MPFA-D. To appraise the accuracy and robustness of our formulation, we solve some benchmark problems found in literature. In this paper, we restrict ourselves to tetrahedral meshes, even though, in principle, there is no restriction to extend the method to other polyhedral control volumes.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
76M20 Finite difference methods applied to problems in fluid mechanics
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI

References:

[1] Keilegavlen, E.; Aavatsmark, I., Monotonicity for MPFA methods on triangular grids, Comput. Geosci., 15, 3-16 (2011) · Zbl 1333.76084 · doi:10.1007/s10596-010-9191-5
[2] Aavatsmark, I.; Barkve, T.; Bøe, O.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I derivation of the methods, SIAM J. Sci. Comput., 19, 1700-1716 (1998) · Zbl 0951.65080 · doi:10.1137/S1064827595293582
[3] Aavatsmark, I.; Barkve, T.; Bøe, O.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II. Discussion and numerical results, SIAM J. Sci. Comput., 19, 1717-1736 (1998) · Zbl 0951.65082 · doi:10.1137/S1064827595293594
[4] Edwards, MG; Rogers, CF, Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci., 2, 259-290 (1998) · Zbl 0945.76049 · doi:10.1023/A:1011510505406
[5] Fletcher, CAJ, Computational Galerkin Methods (1984), Berlin: Springer, Berlin · Zbl 0533.65069 · doi:10.1007/978-3-642-85949-6
[6] Ciarlet, P.G.: The finite element method for elliptic problems. Society for Industrial and Applied Mathematics; 2002. doi:10.1137/1.9780898719208. · Zbl 0999.65129
[7] Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems. Gall. I., Magenes E. Math. Asp. Finite Elem. Methods. Lect. Notes Math. vol 606., Springer, Berlin, 1977, pp. 292-315. doi:10.1007/BFb0064470. · Zbl 0362.65089
[8] Durán, R.G.: Mixed finite element methods. Boffi D., Gastaldi L. Mix. Finite Elem. Compat. Cond. Appl. Lect. Notes Math. vol 1939., Springer, Berlin, 2008, pp. 1-44. doi:10.1007/978-3-540-78319-0_1
[9] de Carvalho, DKE; Willmersdorf, RB; Lyra, PRM, Some results on the accuracy of an edge-based finite volume formulation for the solution of elliptic problems in non-homogeneous and non-isotropic media, Int. J. Numer. Methods Fluids, 61, 237-254 (2009) · Zbl 1335.76041 · doi:10.1002/fld.1948
[10] Ciarlet, PG; Raviart, P-A, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Eng., 2, 17-31 (1973) · Zbl 0251.65069 · doi:10.1016/0045-7825(73)90019-4
[11] Korotov, S.; Křížek, M.; Neittaanmäki, P., Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle, Math. Comput., 70, 107-120 (2000) · Zbl 1001.65125 · doi:10.1090/S0025-5718-00-01270-9
[12] Burman, E.; Ern, A., Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes, Comptes Rendus Math., 338, 641-646 (2004) · Zbl 1049.65128 · doi:10.1016/j.crma.2004.02.010
[13] Le Potier, C.: A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. Int. J. Finite Vol Inst Mathématiques Marseille, AMU, pp. 1-20 (2009) · Zbl 1490.65242
[14] Cancès, C.; Cathala, M.; Le Potier, C., Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations, Numer. Math., 125, 387-417 (2013) · Zbl 1281.65139 · doi:10.1007/s00211-013-0545-5
[15] Pal, M., Edwards, M.G.: Flux-splitting schemes for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients. Eur. Conf. Comput. Fluid Dyn. (2006).
[16] Pal, M.; Edwards, MG, Non-linear flux-splitting schemes with imposed discrete maximum principle for elliptic equations with highly anisotropic coefficients, Int. J. Numer. Methods Fluids, 66, 299-323 (2011) · Zbl 1301.86002 · doi:10.1002/fld.2258
[17] Chen, Q-Y; Wan, J.; Yang, Y.; Mifflin, RT, Enriched multi-point flux approximation for general grids, J. Comput. Phys., 227, 1701-1721 (2008) · Zbl 1221.76123 · doi:10.1016/j.jcp.2007.09.021
[18] Kuzmin, D.; Shashkov, MJ; Svyatskiy, D., A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems, J. Comput. Phys., 228, 3448-3463 (2009) · Zbl 1163.65085 · doi:10.1016/j.jcp.2009.01.031
[19] Su, S.; Dong, Q.; Wu, J., A decoupled and positivity-preserving discrete duality finite volume scheme for anisotropic diffusion problems on general polygonal meshes, J. Comput. Phys., 372, 773-798 (2018) · Zbl 1415.65246 · doi:10.1016/j.jcp.2018.06.052
[20] Zhao, F.; Sheng, Z.; Yuan, G., A monotone combination scheme of diffusion equations on polygonal meshes, ZAMM: J. Appl. Math. Mech./Zeitschrift Für Angew Math Und Mech (2020) · Zbl 07806604 · doi:10.1002/zamm.201900320
[21] Herbin, R., Hubert, F.: Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids. Finite Vol. complex Appl. V, pp. 659-692 (2008). · Zbl 1422.65314
[22] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuous Galerkin Methods for Elliptic Problems, pp. 89-101 (2000). doi:10.1007/978-3-642-59721-3_5. · Zbl 0948.65127
[23] Gao, Z.; Wu, J., A linearity-preserving cell-centered scheme for the heterogeneous and anisotropic diffusion equations on general meshes, Int. J. Numer. Methods Fluids, 67, 2157-2183 (2011) · Zbl 1426.76367 · doi:10.1002/fld.2496
[24] Contreras, FRL; Lyra, PRM; Souza, MRA; Carvalho, DKE, A cell-centered multipoint flux approximation method with a diamond stencil coupled with a higher order finite volume method for the simulation of oil-water displacements in heterogeneous and anisotropic petroleum reservoirs, Comput. Fluids, 127, 1-16 (2016) · Zbl 1390.76416 · doi:10.1016/j.compfluid.2015.11.013
[25] Cavalcante, TdeM; Contreras, FRL; Lyra, PRM; Carvalho, DKE, A multipoint flux approximation with diamond stencil finite volume scheme for the two-dimensional simulation of fluid flows in naturally fractured reservoirs using a hybrid-grid method, Int. J. Numer. Methods Fluids (2020) · doi:10.1002/fld.4829
[26] Lira Filho, RJM; Santos, SR; Cavalcante, TdeM; Contreras, FRL; Lyra, PRM; Carvalho, DKE, A linearity-preserving finite volume scheme with a diamond stencil for the simulation of anisotropic and highly heterogeneous diffusion problems using tetrahedral meshes, Comput Struct, 250, 106510 (2021) · doi:10.1016/j.compstruc.2021.106510
[27] Sheng, Z.; Yuan, G., Construction of Nonlinear Weighted Method for Finite Volume Schemes Preserving Maximum Principle, SIAM J Sci Comput, 40, A607-A628 (2018) · Zbl 1453.65391 · doi:10.1137/16M1098000
[28] Sheng, Z.; Yuan, G.; Yue, J., A nonlinear convex combination in the construction of finite volume scheme satisfying maximum principle, Appl. Numer. Math., 156, 125-139 (2020) · Zbl 1442.65328 · doi:10.1016/j.apnum.2020.04.014
[29] Edwards, MG, M-matrix flux splitting for general full tensor discretization operators on structured and unstructured grids, J. Comput. Phys., 160, 1-28 (2000) · Zbl 0983.76055 · doi:10.1006/jcph.2000.6418
[30] Zhou, H.; Sheng, Z.; Yuan, G., A finite volume method preserving maximum principle for the diffusion equations with imperfect interface, Appl. Numer. Math., 158, 314-335 (2020) · Zbl 1451.65124 · doi:10.1016/j.apnum.2020.08.008
[31] Véron, L.: Elliptic Equations Involving Measures, pp. 593-712 (2004). doi:10.1016/S1874-5733(04)80010-X. · Zbl 1129.35478
[32] Borsuk, M., Kondratiev, V.: The Dirichlet problem for elliptic linear divergent equations in a nonsmooth domain, 2006, pp. 165-213. doi:10.1016/S0924-6509(06)80018-8.
[33] Aavatsmark, I.; Eigestad, GT; Mallison, BT; Nordbotten, JM, A compact multipoint flux approximation method with improved robustness, Numer. Methods Partial Differ. Equ, 24, 1329-1360 (2008) · Zbl 1230.65114 · doi:10.1002/num.20320
[34] Møyner, O.; Lie, K-A, A multiscale two-point flux-approximation method, J. Comput. Phys., 275, 273-293 (2014) · Zbl 1349.76368 · doi:10.1016/j.jcp.2014.07.003
[35] Eymard, R., Henry, G., Herbin, R., Hubert, F., Klöfkorn, R., Manzini, G.: 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids, 2011, pp. 895-930. doi:10.1007/978-3-642-20671-9_89. · Zbl 1246.76053
[36] Queiroz, LES; Souza, MRA; Contreras, FRL; Lyra, PRM; de Carvalho, DKE, On the accuracy of a nonlinear finite volume method for the solution of diffusion problems using different interpolations strategies, Int. J. Numer. Methods Fluids, 74, 270-291 (2014) · Zbl 1455.65203 · doi:10.1002/fld.3850
[37] Danilov, AA; Vassilevski, YV, A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes, Russ J. Numer. Anal. Math. Model (2009) · Zbl 1166.65394 · doi:10.1515/RJNAMM.2009.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.