×

The Unruh-DeWitt model and its joint interacting Hilbert space. (English) Zbl 07891934

Summary: In this work we make the connection between the Unruh-DeWitt (UDW) particle detector model applied to quantum field theory in curved spacetimes and the rigorous construction of the spin-boson (SB) model. With some modifications, we show that existing results about the existence of a SB ground state can be adapted to the UDW model. In the most relevant scenario involving massless scalar fields in (3+1)-dimensional globally hyperbolic spacetimes, where the UDW model describes a simplified model of light-matter interaction, we argue that common choices of the spacetime smearing functions regulate the ultraviolet behaviour of the model but can still exhibit infrared (IR) divergences. In particular, this implies the well-known expectation that the joint interacting Hilbert space of the model cannot be described by the tensor product of a two-dimensional complex Hilbert space and the Fock space of the vacuum representation. We discuss the conditions under which this problem does not arise and the relevance of the operator-algebraic approach for better understanding of particle detector models and their applications. Our work clarifies the connection between obstructions due to Haag’s theorem and IR bosons in the SB models, and paves the way for more rigorous study of entanglement and communication in the UDW framework involving multiple detectors.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

References:

[1] Fewster, C. J.; Verch, R., Commun. Math. Phys., 378, 851-89, 2020 · Zbl 1446.81026 · doi:10.1007/s00220-020-03800-6
[2] Bostelmann, H.; Fewster, C. J.; Ruep, M. H., Phys. Rev. D, 103, 2021 · doi:10.1103/PhysRevD.103.025017
[3] Polo-Gómez, J.; Garay, L. J.; Martín-Martínez, E., Phys. Rev. D, 105, 2022 · doi:10.1103/PhysRevD.105.065003
[4] Jubb, I., Phys. Rev. D, 105, 2022 · doi:10.1103/PhysRevD.105.025003
[5] Pranzini, N.; Keski-Vakkuri, E., 2023
[6] Hawking, S. W., Comm. Math. Phys., 43, 199-220, 1975 · Zbl 1378.83040 · doi:10.1007/BF02345020
[7] Wald, R.; Pfister, J., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (Chicago Lectures in Physics), 1994, University of Chicago Press · Zbl 0842.53052
[8] Crispino, L. C B.; Higuchi, A.; Matsas, G. E A., Rev. Mod. Phys., 80, 787-838, 2008 · Zbl 1205.83030 · doi:10.1103/RevModPhys.80.787
[9] Unruh, W. G., Phys. Rev. D, 14, 870-92, 1976 · doi:10.1103/PhysRevD.14.870
[10] DeWitt, B. S.; Hawking, S. W.; Israel, W., Quantum gravity: the new synthesis, General Relativity: An Einstein Centenary Survey, pp 680-745, 1979, Cambridge University Press · Zbl 0424.53001
[11] Tjoa, E.; Mann, R. B., J. High Energy Phys., JHEP03(2022)014, 2022 · Zbl 1522.83244 · doi:10.1007/JHEP03(2022)014
[12] Hollands, S.; Sanders, K., 2017
[13] Hollands, S.; Ranallo, A., Commun. Math. Phys., 404, 1-36, 2023
[14] Sanders, K., J. Phys. A: Math. Theor., 56, 2023 · Zbl 1537.81157 · doi:10.1088/1751-8121/ad0bca
[15] Summers, S. J.; Werner, R., Phys. Lett. A, 110, 257-9, 1985 · doi:10.1016/0375-9601(85)90093-3
[16] Summers, S. J.; Werner, R., J. Math. Phys., 28, 2440-7, 1987 · Zbl 0648.46066 · doi:10.1063/1.527733
[17] Casini, H.; Huerta, M.; Magán, J. M.; Pontello, D., J. High Energy Phys., JHEP02(2020)014, 2020 · Zbl 1435.81116 · doi:10.1007/JHEP02(2020)014
[18] Thierry-Mieg, J.; Jarvis, P.; Magán, J. M., J. High Energy Phys., JHEP04(2021)001, 2021 · Zbl 1462.81208 · doi:10.1007/JHEP04(2021)001
[19] Longo, R.; Xu, F., Adv. Math., 337, 139-70, 2018 · Zbl 1398.81216 · doi:10.1016/j.aim.2018.08.015
[20] Vilasini, V.; Renner, R., 2022
[21] Hardy, L., J. Phys. A: Math. Theor., 40, 3081-99, 2007 · Zbl 1111.83057 · doi:10.1088/1751-8113/40/12/S12
[22] Zych, M.; Costa, F.; Pikovski, I.; Brukner, C., Nat. Commun., 10, 1-10, 2019 · doi:10.1038/s41467-019-11579-x
[23] Costa, F.; Shrapnel, S., New J. Phys., 18, 2016 · Zbl 1456.81009 · doi:10.1088/1367-2630/18/6/063032
[24] Paunković, N.; Vojinović, M., Quantum, 4, 275, 2020 · doi:10.22331/q-2020-05-28-275
[25] Reznik, B., Found. Phys., 33, 167-76, 2003 · doi:10.1023/A:1022875910744
[26] Reznik, B.; Retzker, A.; Silman, J., Phys. Rev. A, 71, 2005 · Zbl 1227.81053 · doi:10.1103/PhysRevA.71.042104
[27] Valentini, A., Phys. Lett. A, 153, 321-5, 1991 · doi:10.1016/0375-9601(91)90952-5
[28] Pozas-Kerstjens, A.; Martín-Martínez, E., Phys. Rev. D, 92, 2015 · doi:10.1103/PhysRevD.92.064042
[29] Pozas-Kerstjens, A.; Martín-Martínez, E., Phys. Rev. D, 94, 2016 · doi:10.1103/PhysRevD.94.064074
[30] Jonsson, R. H.; Martín-Martínez, E.; Kempf, A., Phys. Rev. A, 89, 2014 · doi:10.1103/PhysRevA.89.022330
[31] Tjoa, E.; Martín-Martínez, E., Phys. Rev. D, 104, 2021 · doi:10.1103/PhysRevD.104.125005
[32] Simidzija, P.; Ahmadzadegan, A.; Kempf, A.; Martín-Martínez, E., Phys. Rev. D, 101, 2020 · doi:10.1103/PhysRevD.101.036014
[33] Landulfo, A. G,S, Phys. Rev. D, 93, 2016 · doi:10.1103/PhysRevD.93.104019
[34] Tjoa, E., Phys. Rev. A, 106, 2022 · doi:10.1103/PhysRevA.106.032432
[35] Lapponi, A.; Moustos, D.; Bruschi, D. E.; Mancini, S., Phys. Rev. D, 107, 2023 · doi:10.1103/PhysRevD.107.125010
[36] Kent, A., Phys. Rev. Lett., 83, 1447-50, 1999 · doi:10.1103/PhysRevLett.83.1447
[37] Lo, H-K; Chau, H. F., Physica D, 120, 177-87, 1998 · Zbl 1040.81509 · doi:10.1016/S0167-2789(98)00053-0
[38] Adlam, E.; Kent, A., Phys. Rev. A, 92, 2015 · doi:10.1103/PhysRevA.92.022315
[39] Buhrman, H.; Chandran, N.; Fehr, S.; Gelles, R.; Goyal, V.; Ostrovsky, R.; Schaffner, C., SIAM J. Comput., 43, 150-78, 2014 · Zbl 1290.94052 · doi:10.1137/130913687
[40] Vilasini, V.; Portmann, C.; Del Rio, L., New J. Phys., 21, 2019 · doi:10.1088/1367-2630/ab0e3b
[41] Lopp, R.; Martín-Martínez, E., Phys. Rev. A, 103, 2021 · doi:10.1103/PhysRevA.103.013703
[42] Martín-Martínez, E.; Perche, T. R.; de SLTorres, B., Phys. Rev. D, 101, 2020 · doi:10.1103/PhysRevD.101.045017
[43] Martín-Martínez, E.; Perche, T. R.; de S. L Torres, B., Phys. Rev. D, 103, 2021 · doi:10.1103/PhysRevD.103.025007
[44] Tjoa, E.; Mann, R. B., J. High Energy Phys., JHEP08(2020)155, 2020 · Zbl 1454.83067 · doi:10.1007/JHEP08(2020)155
[45] Juárez-Aubry, B. A.; Louko, J., Class. Quantum Grav., 31, 2014 · Zbl 1307.83039 · doi:10.1088/0264-9381/31/24/245007
[46] Perche, T. R., Phys. Rev. D, 106, 2022 · doi:10.1103/PhysRevD.106.025018
[47] Stritzelberger, N.; Henderson, L. J.; Baccetti, V.; Menicucci, N. C.; Kempf, A., Phys. Rev. D, 103, 2021 · doi:10.1103/PhysRevD.103.016007
[48] Doukas, J.; Lin, S-Y; Hu, B.; Mann, R. B., J. High Energy Phys., JHEP11(2013)119, 2013 · doi:10.1007/JHEP11(2013)119
[49] Hsiang, J-T; Hu, B-L, Phys. Rev. D, 106, 2022 · doi:10.1103/PhysRevD.106.045002
[50] Hotta, M.; Kempf, A.; Martín-Martínez, E.; Tomitsuka, T.; Yamaguchi, K., Phys. Rev. D, 101, 2020 · doi:10.1103/PhysRevD.101.085017
[51] Perche, T. R.; Polo-Gómez, J.; Torres, B. D S.; Martín-Martínez, E., 2023
[52] Gale, E. P,G; Zych, M., Phys. Rev. D, 107, 2023 · doi:10.1103/PhysRevD.107.056023
[53] Lima, C.; Patterson, E.; Tjoa, E.; Mann, R. B., Phys. Rev. D, 108, 2023 · doi:10.1103/PhysRevD.108.105020
[54] Jonsson, R. H.; Knörzer, J., Quantum, 8, 1237, 2024 · doi:10.22331/q-2024-01-30-1237
[55] Lin, S-Y; Hu, B. L., Phys. Rev. D, 76, 2007 · doi:10.1103/PhysRevD.76.064008
[56] Tjoa, E., Phys. Rev. D, 108, 2023 · doi:10.1103/PhysRevD.108.045003
[57] Tjoa, E., Phys. Rev. D, 106, 2022 · doi:10.1103/PhysRevD.106.045012
[58] Tjoa, E.; Gallock-Yoshimura, K., Phys. Rev. D, 105, 2022 · doi:10.1103/PhysRevD.105.085011
[59] Simidzija, P.; Jonsson, R. H.; Martín-Martínez, E., Phys. Rev. D, 97, 2018 · doi:10.1103/PhysRevD.97.125002
[60] Braak, D., Phys. Rev. Lett., 107, 2011 · doi:10.1103/PhysRevLett.107.100401
[61] Xie, Q.; Zhong, H.; Batchelor, M. T.; Lee, C., J. Phys. A: Math. Theor., 50, 2017 · Zbl 1362.81105 · doi:10.1088/1751-8121/aa5a65
[62] Earman, J.; Fraser, D., Erkenntnis, 64, 305-44, 2006 · Zbl 1107.81004 · doi:10.1007/s10670-005-5814-y
[63] Fannes, M.; Nachtergaele, B.; Verbeure, A., Commun. Math. Phys., 114, 537-48, 1988 · Zbl 0653.46064 · doi:10.1007/BF01229453
[64] Spohn, H., Commun. Math. Phys., 123, 277-304, 1989 · Zbl 0667.60108 · doi:10.1007/BF01238859
[65] Amann, A., Ann. Phys., NY, 208, 414-48, 1991 · Zbl 0875.46010 · doi:10.1016/0003-4916(91)90302-O
[66] Hasler, D.; Herbst, I., Ground states in the spin boson model, Annales Henri Poincaré, vol 12, pp 621-77, 2011, Springer · Zbl 1222.81160
[67] Hasler, D.; Hinrichs, B.; Siebert, O., Commun. Math. Phys., 388, 419-33, 2021 · Zbl 1479.81081 · doi:10.1007/s00220-021-04185-w
[68] De Roeck, W.; Griesemer, M.; Kupiainen, A., Adv. Math., 268, 62-84, 2015 · Zbl 1310.81110 · doi:10.1016/j.aim.2014.09.012
[69] De Bievre, S.; Merkli, M., Class. Quantum Grav., 23, 6525, 2006 · Zbl 1123.83012 · doi:10.1088/0264-9381/23/22/026
[70] Van Hove, L., Physica, 18, 145-59, 1952 · Zbl 0046.21307 · doi:10.1016/S0031-8914(52)80017-5
[71] Dereziński, J., Van hove hamiltonians-exactly solvable models of the infrared and ultraviolet problem, Annales Henri Poincaré, vol 4, pp 713-38, 2003, Springer · Zbl 1069.81533
[72] Fewster, C. J.; Rejzner, K., Algebraic quantum field theory—an introduction, 2019
[73] Dereziński, J.; Gérard, C., Scattering theory of infrared divergent Pauli-Fierz hamiltonians, Annales Henri Poincaré, vol 5, pp 523-77, 2004, Springer · Zbl 1060.81060
[74] Dybalski, W2019Scattering theory of quantum systems with infinitely many degrees of freedom
[75] Birrell, N.; Davies, P., Quantum Fields in Curved Space (Cambridge Monographs on Mathematical Physics), 1984, Cambridge University Press
[76] Khavkine, I.; Moretti, V.; R, Brunetti; C, Dappiaggi; K, Fredenhagen; J, Yngvason, Algebraic QFT in curved spacetime and quasifree Hadamard states: an introduction, Advances in Algebraic Quantum Field Theory, 191-251, 2015 · Zbl 1334.81081
[77] Kay, B. S.; Wald, R. M., Phys. Rep., 207, 49-136, 1991 · Zbl 0861.53074 · doi:10.1016/0370-1573(91)90015-E
[78] Radzikowski, M. J., Commun. Math. Phys., 179, 529-53, 1996 · Zbl 0858.53055 · doi:10.1007/BF02100096
[79] Benini, M.; Dappiaggi, C., Models of free quantum field theories on curved backgrounds, Advances in Algebraic Quantum Field Theory, pp 75-124, 2015, Springer · Zbl 1334.81099
[80] Bratteli, O.; Robinson, D., Operator Algebras and Quantum Statistical Mechanics: Equilibrium States (Models in Quantum Statistical Mechanics Theoretical and Mathematical Physics), 2013, Springer
[81] Dereziński, J., Introduction to representations of the canonical commutation and anticommutation relations, Large Coulomb Systems: Lecture Notes on Mathematical Aspects of QED, pp 63-143, 2006, Springer · Zbl 1101.81100
[82] Ruep, M. H., Class. Quantum Grav., 38, 2021 · Zbl 1479.81055 · doi:10.1088/1361-6382/ac1b08
[83] Poisson, E., A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, 2009, Cambridge University Press
[84] Wald, R., General Relativity, 2010, University of Chicago Press
[85] Bratteli, O.; Robinson, D., Operator Algebras and Quantum Statistical Mechanics: Models in Quantum Statistical Mechanics (Texts and Monographs in Physics vol 2), 2002, Springer
[86] Kubo, R., J. Phys. Soc. Japan, 12, 570-86, 1957 · doi:10.1143/JPSJ.12.570
[87] Martin, P. C.; Schwinger, J.; Martin, P. C.; Schwinger, J., Phys. Rev., 115, 1342, 1959 · Zbl 0091.22906 · doi:10.1103/PhysRev.115.1342
[88] Takesaki, M., Commun. Math. Phys., 17, 33-41, 1970 · doi:10.1007/BF01649582
[89] Müller-Herold, U., Lett. Math. Phys., 4, 45-48, 1980 · Zbl 0431.46053 · doi:10.1007/BF00419804
[90] Bisognano, J. J.; Wichmann, E. H., J. Math. Phys., 16, 985-1007, 1975 · Zbl 0316.46062 · doi:10.1063/1.522605
[91] Kaplanek, G.; Burgess, C., J. High Energy Phys., JHEP01(2021)098, 2020 · doi:10.1007/JHEP01(2021)098
[92] Benatti, F.; Floreanini, R., Phys. Rev. A, 70, 2004 · doi:10.1103/PhysRevA.70.012112
[93] Moustos, D.; Anastopoulos, C., Phys. Rev. D, 95, 2017 · doi:10.1103/PhysRevD.95.025020
[94] Kaplanek, G.; Tjoa, E., Phys. Rev. A, 107, 2023 · doi:10.1103/PhysRevA.107.012208
[95] Dereziński, J.; Gérard, C., Rev. Math. Phys., 11, 383-450, 1999 · Zbl 1044.81556 · doi:10.1142/S0129055X99000155
[96] Gerard, C., Ann. Henri Poincaré, 1, 443-59, 2000 · Zbl 1004.81012 · doi:10.1007/s000230050002
[97] Griesemer, M.; Lieb, E. H.; Loss, M., Inven. Math., 145, 557-95, 2001 · Zbl 1044.81133 · doi:10.1007/s002220100159
[98] Moretti, V., Commun. Math. Phys., 232, 189-221, 2003 · Zbl 1015.81044 · doi:10.1007/s00220-002-0702-7
[99] Weinberg, S., The Quantum Theory of Fields, vol 2, 1995, Cambridge University Press · Zbl 0959.81002
[100] Witten, E., 2023
[101] Marzlin, K-P; Sanders, B. C., Phys. Rev. Lett., 93, 2004 · doi:10.1103/PhysRevLett.93.160408
[102] Low, F. E., Phys. Rev., 110, 974-7, 1958 · Zbl 0082.42802 · doi:10.1103/PhysRev.110.974
[103] Wong, C. Y., 2014
[104] Avalos, D. M.; Gallock-Yoshimura, K.; Henderson, L. J.; Mann, R. B., Phys. Rev. Res., 5, 2023 · doi:10.1103/PhysRevResearch.5.L042039
[105] Martín-Martínez, E.; Louko, J., Phys. Rev. D, 90, 2014 · doi:10.1103/PhysRevD.90.024015
[106] Tjoa, E.; Martín-Martínez, E., Phys. Rev. D, 99, 2019 · doi:10.1103/PhysRevD.99.065005
[107] Crawford, S.; Rejzner, K.; Vicedo, B., Lorentzian 2D CFT from the pAQFT perspective, Annales Henri Poincaré, vol 23, pp 3525-85, 2022, Springer · Zbl 1510.81101
[108] Bratteli, O., Trans. Am. Math. Soc., 171, 195-234, 1972 · Zbl 0264.46057
[109] Attal, S.; Joye, A.; Pillet, C. A., Open Quantum Systems I: The Hamiltonian Approach, 2006, Springer
[110] Jakšić, V.; Pillet, C. A., Commun. Math. Phys., 178, 627-51, 1996 · Zbl 0864.47049
[111] Hübner, M.; Spohn, H., Rev. Math. Phys., 7, 363-87, 1995 · Zbl 0843.35068 · doi:10.1142/S0129055X95000165
[112] Reed, M.; Simon, B., II: Fourier Analysis, Self-Adjointness, vol 2, 1975, Elsevier
[113] Bátkai, A.; Sikolya, E., Open Math., 10, 150-8, 2012 · Zbl 1264.47046 · doi:10.2478/s11533-011-0101-4
[114] Gilmore, R., Lie Groups, Physics and Geometry: An Introduction for Physicists, Engineers and Chemists, 2008, Cambridge University Press · Zbl 1157.00009
[115] Morfa-Morales, E., 2012
[116] Greenberg, O.; Licht, A., J. Math. Phys., 4, 613-4, 1963 · doi:10.1063/1.1703997
[117] Sorce, J., J. High Energy Phys., JHEP12(2023)079, 2023 · Zbl 07807196 · doi:10.1007/JHEP12(2023)079
[118] Sorce, J., 2023
[119] Witten, E., Rev. Mod. Phys., 90, 2018 · doi:10.1103/RevModPhys.90.045003
[120] Verch, R.; Werner, R. F., Rev. Math. Phys., 17, 545-76, 2005 · Zbl 1074.81014 · doi:10.1142/S0129055X05002364
[121] Brunetti, R.; Fredenhagen, K.; Pinamonti, N., Algebraic approach to Bose-Einstein condensation in relativistic quantum field theory: spontaneous symmetry breaking and the goldstone theorem, Annales Henri Poincaré, vol 22, pp 951-1000, 2021, Springer · Zbl 1461.81070
[122] van Luijk, L.; Schwonnek, R.; Stottmeister, A.; Werner, R. F., 2023
[123] Caribé, J. G A.; Jonsson, R. H.; Casals, M.; Kempf, A.; Martín-Martínez, E., Phys. Rev. D, 108, 2023 · doi:10.1103/PhysRevD.108.025016
[124] van Luijk, L.; Schwonnek, R.; Stottmeister, A.; Werner, R. F., 2023
[125] van Luijk, L.; Stottmeister, A.; Werner, R. F.; Wilming, H., 2024
[126] Tjoa, E.; Gray, F., 2022
[127] Poisson, E.; Pound, A.; Vega, I., Living Rev. Relativ., 14, 1-190, 2011 · Zbl 1316.83024 · doi:10.12942/lrr-2011-7
[128] Martín-Martínez, E., Phys. Rev. D, 92, 2015 · doi:10.1103/PhysRevD.92.104019
[129] Araki, H.; Woods, E., J. Math. Phys., 4, 637-62, 1963 · doi:10.1063/1.1704002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.