×

Anisotropic mesh adaptation with optimal convergence for finite elements using embedded geometries. (English) Zbl 1295.74100

Summary: This paper presents a numerical study of a recent technique that consists in modeling embedded geometries by a level-set representation in combination with local anisotropic mesh refinement. The local anisotropic mesh procedure is suitable for various orders \(p\) of finite element approximations. This method proves beneficial in simulations involving complex geometries, as it suppresses the need for the tedious process of body-fitted mesh generation, without altering the finite element formulation nor the prescription of boundary conditions. The first part of the study deals with a simple Laplace problem featuring a planar interface on which a Dirichlet boundary condition is imposed. It is shown that the appropriate amount of local isotropic refinement yields the optimal convergence rate for various finite element orders \(p\), unlike uniform refinement. Anisotropic refinement further ensures geometric convergence and limits the growth of the number of unknowns. Then, we explain how to use metric-based anisotropic adaptation to obtain nearly body-fitted meshes with arbitrary geometries. The optimal rate of convergence, both for the solution and the geometry, is demonstrated on 2D and 3D academic Laplace problems involving curved boundaries. Finally, applications in the field of fluid dynamics and material science are presented. The results for these simulations successfully converge towards data from the literature, analytical solutions or values obtained with body-fitted meshes.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics

Software:

bamg

References:

[1] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 1, 201-225 (1981) · Zbl 0462.76020
[3] Helio, J. C., Barbosa and Thomas J.R. Hughes. The finite element method with lagrange multipliers on the boundary: circumventing the babuska-brezzi condition, Comput. Methods Appl. Mech. Engrg., 85, 1, 109-128 (1991) · Zbl 0764.73077
[4] Bechet, E.; Moes, N.; Wohlmuth, B., A stable lagrange multiplier space for stiff interface conditions within the extended finite element method, Int. J. Numer. Methods Engrg., 78, 8, 931-954 (2009) · Zbl 1183.74259
[5] Pasko, A. A.; Belyaev, A. G.; Kunii, T. L., Ridges and ravines on implicit surfaces, Comput. Graph. Int., 1998, 530-535 (1998)
[6] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[7] Bui, C.; Frey, P.; Maury, B., A coupling strategy based on anisotropic mesh adaptation for solving two-fluid flows, Int. J. Numer. Methods Fluids, 66, 10, 1226-1247 (2011) · Zbl 1247.76050
[8] Coutanceau, M.; Bouard, R., Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. part 1, steady flow, J. Fluid Mech., 79, 2, 231-256 (1977)
[9] Dennis, S. C.R.; Chang, G.-Z., Numerical solutions for steady flow past a circular cylinder at reynolds number up to 100, J. Fluid Mech., 42, 471-489 (1970) · Zbl 0193.26202
[11] Dobrzynski, C.; Frey, P.; Mohammadi, B.; Pironneau, O., Fast and accurate simulations of air-cooled structures, Comput. Methods Appl. Mech. Engrg., 195, 3168-3180 (2006) · Zbl 1176.76062
[13] Dolbow, J. E.; Franca, L. P., Residual-free bubbles for embedded dirichlet problems, Comput. Methods Appl. Mech. Engrg., 197, 3751-3759 (2008) · Zbl 1197.65180
[14] Dolbow, J. E.; Harari, I., An efficient finite element method for embedded interface problems, Int. J. Numer. Methods Engrg., 78, 2, 229-252 (2009) · Zbl 1183.76803
[15] Fornberg, B., A numerical study of steady viscous flow past a circular cylinder, J. Fluid Mech., 98, 4, 819-855 (1980) · Zbl 0428.76032
[16] Frey, P. J.; George, P.-L., Mesh Generation (2000), Application to Finite Elements. Hermès: Application to Finite Elements. Hermès Paris · Zbl 0968.65009
[17] Gerlach, D.; Tomar, G.; Biswas, G.; Durst, F., Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows, Int. J. Heat Mass Transfer, 49, 740-754 (2006) · Zbl 1189.76363
[18] Gibou, F.; Fedkiw, R. P.; Cheng, L. T.; Kang, M., A second-order-accurate symmetric discretization of the poisson equation on irregular domains, J. Comput. Phys., 176, 1, 205-227 (2002) · Zbl 0996.65108
[19] Goldman, R., Curvature formulas for implicit curves and surfaces, Comput. Aided Geomet. Des., 22, 22, 632-658 (2005) · Zbl 1084.53004
[20] Hachem, E.; Kloczko, T.; Digonnet, H.; Coupez, T., Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method, Int. J. Numer. Methods Fluids, 68, 1, 99-121 (2012) · Zbl 1319.76027
[21] Hautefeuille, M.; Annavarapu, C.; Dolbow, J. E., Robust imposition of dirichlet boundary conditions on embedded surfaces, Int. J. Numer. Methods Engrg., 90, 1, 40-64 (2011) · Zbl 1242.76124
[24] Marchandise, E.; Compère, G.; Willemet, M.; Bricteux, G.; Geuzaine, C.; Remacle, J. F., Quality meshing based on STL triangulations for biomedical simulations, Int. J. Numer. Methods Biomed. Engrg., 26, 7, 876-889 (2010) · Zbl 1197.92031
[25] Marchandise, E.; Geuzaine, P.; Chevaugeon, N.; Remacle, J.-F., A stabilized finite element method using a discontinous level set approach for the computation of bubble dynamics, Journal of Computational Physics, 225, 1, 949-974 (2007) · Zbl 1118.76040
[26] Marchandise, E.; Remacle, J.-F., A stabilized finite element method using a discontinous level set approach for solving two phase incompressible flows, Journal of Computational Physics, 219, 2, 780-800 (2006) · Zbl 1189.76343
[27] McKee, S.; Tomé, M. F.; Ferreira, V. G.; Cuminato, J. A.; Castelo, A.; Sousa, F. S.; Mangiavacchi, N., The MAC method, Comput. Fluids, 37, 8, 907-930 (2008) · Zbl 1237.76128
[28] Moës, N.; Cloirec, M.; Cartraud, P.; Remacle, J. F., A computational approach to handle complex microstructure geometries, Comput. Methods Appl. Mech. Engrg., 192, 28, 3163-3177 (2003) · Zbl 1054.74056
[29] Moës, N.; Dolbow, J. E.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Fluids, 43, 1, 131-150 (1999) · Zbl 0955.74066
[30] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 1, 479-517 (2002) · Zbl 1123.74309
[31] Sucker, D.; Brauer, H., Fluiddynamik bei quer angestroemten zylindern, Waerme- und Stoffuebertragung, 8, 149-158 (1975)
[32] Tritton, D.-J., Experiments on the flow past a circular cylinder at low reynolds numbers, J. Fluid Mech., 6, 4, 547-567 (1959) · Zbl 0092.19502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.