×

Cyclotomic points and algebraic properties of polygon diagonals. (English) Zbl 1478.11132

Let \(c\) be a real number satisfying \(c^2 \in {\mathbb Q}\), and let \(\phi_c=c/2+\sqrt{1+(c/2)^2}\). The authors show that \(\phi_c\) is a quotient of two diagonals of a regular polygon if and only if \[c \in \{0, \pm 1, \pm 3/2,\pm 2, \pm \sqrt{2}, \pm \sqrt{5}, \pm \sqrt{12}, \pm \sqrt{1/2}, \pm \sqrt{1/6}, \pm \sqrt{1/12}, \pm \sqrt{4/3}\}.\] In cyclotomic terms this condition can be expressed as \(\phi_c=|1-\zeta_N^a|/|1-\zeta_N^b|\), where \(\zeta_N\) is a primitive \(N\)th root of unity and \(a,b \in {\mathbb Z}\). Assuming that \(\gcd(a,b)=1\) they show that \([{\mathbb Q}(|1-\zeta_N^a|/|1-\zeta_N^b|): {\mathbb Q}]\) is \(\varphi(4N)/4\) for \(N\) odd, and at least \(\varphi(4N)/10\) for \(N\) even, where \(\varphi\) is Euler’s totient function. The proof is based on searching cyclotomic points for some families of polynomials.

MSC:

11R18 Cyclotomic extensions
51M04 Elementary problems in Euclidean geometries

Software:

SageMath

References:

[1] I. Aliev and C. J. Smyth, Solving algebraic equations in roots of unity, Forum Math. 24 (3) (2012), 641-665. · Zbl 1297.11068
[2] R. J. Bradford and J. H. Davenport. Effective tests for cyclotomic polynomials. In Symbolic and Algebraic Computation (Rome, 1988), Volume 358 of Lecture Notes in Comput. Sci., Springer, Berlin, 1989.
[3] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.-P.
[4] Schreiber, Pisot and Salem Numbers, Birkhäuser Verlag, Basel, 1992. With a preface by David W. Boyd.
[5] F. Beukers and C. J. Smyth, Cyclotomic points on curves. In Number Theory for the Millen-nium, AK Peters, Natick, MA, 2002. · Zbl 1029.11009
[6] A. Redondo Buitrago, Polygons, diagonals, and the bronze mean, Nexus Network Journal 9 (2) (2007), 321-326. · Zbl 1275.51007
[7] J. H. Conway and A. J. Jones, Trigonometric diophantine equations (On vanishing sums of roots of unity), Acta Arith. 30 (3) (1976), 229-240. · Zbl 0349.10014
[8] F. Calegari, S. Morrison, and N. Snyder, Cyclotomic integers, fusion categories, and subfactors, Comm. Math. Phys. 303 (3) (2011) 845-896. · Zbl 1220.18004
[9] J. Cox, D. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, Undergrad. Texts Math., Springer-Verlag, New York, 1997.
[10] P. A. Damianou, Monic polynomials in Z[x] with roots in the unit disc, Amer. Math. Monthly 108 (3) (2001), 253-257. · Zbl 0974.12002
[11] D. D’Alessandro, M. Daleh, and I. Mezic, Control of mixing in fluid flow: a maximum entropy approach, IEEE Trans. Automat. Control 44 (10) (1999) 1852-1863. · Zbl 0956.93065
[12] V. W. de Spinadel, The family of metallic means, Vis. Math. 1 (3) (1999) 1-16. · Zbl 1016.11005
[13] J. B. Gil and A. Worley, Generalized metallic means, arXiv e-prints page arXiv:1901.02619, Jan 2019.
[14] A. Hurwitz, Ueber die angenäherte darstellung der zahlen durch rationale brüche, Math. Ann. 44 (2) (1894) 417-436. · JFM 25.0322.04
[15] W. Jagy, Is the Euler phi function bounded below, Mathematics Stack Exchange (2013) https://math.stackexchange.com/q/301856 (version: 2015-12-19).
[16] L. Kronecker, Zwei sätzeüber gleichungen mit ganzzahligen coefficienten, J. Reine Angew. Math 53 (1857) 173-175. · ERAM 053.1389cj
[17] S. Lang, Division points on curves, Ann. Mat. Pura Appl. 70 (1965) 229-234. · Zbl 0151.27401
[18] M. Laurent,Équations diophantiennes exponentielles. In Seminar on Number Theory, Univ. Bordeaux I, Talence, 1984. · Zbl 0554.10010
[19] L. Leroux, Computing the torsion points of a variety defined by lacunary polynomials, Math. Comp. 81 (279) (2012) 1587-1607. · Zbl 1263.11115
[20] T. Y. Lam and K. H. Leung, On vanishing sums of roots of unity, J. Algebra 224 (1) (2000) 91-109. · Zbl 1099.11510
[21] G. Perez-Giz, Beyond the golden ratio, PBS Infinite Series Youtube Channel hyperlink: https://www.youtube.com/watch?v=MIxvZ6jwTuA (2018).
[22] B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, SIAM J. Discrete Math. 11 (1) (1998) 135-156. · Zbl 0913.51005
[23] J. M. Rojas, Efficiently detecting torsion points and subtori. In Algebra, Geometry, and their Interactions, Volume 448 of Contemp. Math., 215-235. Amer. Math. Soc., Providence, RI, 2007. · Zbl 1132.14338
[24] W. M. Ruppert, Solving algebraic equations in roots of unity J. Reine Angew. Math. 435 (1993) 119-156. · Zbl 0763.14008
[25] C. J. Smyth, Seventy years of Salem numbers, Bull. Lond. Math. Soc. 47 (3) (2015) 379-395. · Zbl 1321.11111
[26] J. P. Steinberger, Minimal vanishing sums of roots of unity with large coefficients, Proc. Lond. Math. Soc. 97 (3) (2008) 689-717. · Zbl 1209.11093
[27] The Sage Developers, SageMath The Sage Mathematics Software System (Version 8.8) 2019 https://www.sagemath.org .
[28] L. W lodarski, On the equation cos α 1 +cos α 2 +cos α 3 +cos α 4 = 0, Ann. univ. Sci. Budapest. Eötvös Sect. Math. 12 (1969) 147-155. · Zbl 0191.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.