×

A generalized hyperbolic model for a risky asset with dependence. (English) Zbl 1471.91566

Summary: We present a construction of the Generalized Hyperbolic (GH) subordinator model for a risky asset with dependence. The construction of the subordinator (activity time) process is implemented via superpositions of Ornstein-Uhlenbeck type processes driven by Lévy noise. It unifies, on the basis of self-decomposability of the Generalized Inverse Gaussian (GIG) distribution, the construction of the various special cases of the GH subordinator class, such as the Variance Gamma, normal inverse Gaussian, hyperbolic and, especially, \(t\) distributions. An option pricing formula for the proposed model is derived.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60G10 Stationary stochastic processes
60H30 Applications of stochastic analysis (to PDEs, etc.)
Full Text: DOI

References:

[1] Barndorff-Nielsen, O. E., Superposition of Ornstein-Uhlenbeck type processes, Theory Probab. Appl., 45, 175-194 (2001) · Zbl 1003.60039
[2] Barndorff-Nielsen, O. E.; Shephard, N., Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B, 63, 167-241 (2001) · Zbl 0983.60028
[3] Bibby, B. M.; Skovgaard, I. B.; Sørensen, M., Diffusion-type models with given marginal distribution and autocorrelation function, Bernoulli, 11, 191-220 (2005) · Zbl 1066.60071
[4] Carr, P.; Geman, H.; Madan, D.; Yor, M., Self-decomposability and option pricing, Math. Finance, 17, 31-75 (2007) · Zbl 1278.91157
[5] Carr, P.; Madan, D., Option valuation using the fast Fourier transform, J. Comput. Finance, 2, 61-73 (1999)
[6] Eberlein, E.; Hammerstein, E. A., Generalized hyperbolic and inverse Gaussian distributions: limiting cases and approximation of processes, (Dalang, R. C.; Dozzi, M.; Russo, F., Seminar on Stochastic Analysis, Random Fields and Applications IV (2004), Birkhäuser: Birkhäuser Basel), 221-264 · Zbl 1057.60050
[7] Eberlein, E.; Raible, S., Term structure models driven by general Lévy processes, Math. Finance, 9, 31-53 (1999) · Zbl 0980.91020
[8] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., (Bateman Manuscript Project: Higher Transcendental Functions, Vol. 2 (1953), McGraw-Hill: McGraw-Hill New York) · Zbl 0052.29502
[9] Finlay, R.; Seneta, E., Stationary-increment student and Variance-Gamma processes, J. Appl. Probab., 43, 441-453 (2006), (Correction: 1207) · Zbl 1103.62103
[10] Finlay, R.; Seneta, E., A gamma activity time process with noninteger parameter and self-similar limit, J. Appl. Probab., 44, 950-959 (2007) · Zbl 1181.60053
[11] Finlay, R.; Seneta, E., Stationary-increment Variance-Gamma and \(t\) models: simulation and parameter estimation, Int. Statist. Rev., 76, 167-186 (2008) · Zbl 07882743
[12] Finlay, R.; Seneta, E., Option pricing with VG-like models, Int. J. Theor. Appl. Finance, 11, 943-955 (2008) · Zbl 1175.91178
[13] Fung, T.; Seneta, E., Extending the multivariate generalized \(t\) and generalised VG distributions, J. Multivariate Anal., 101, 154-164 (2010) · Zbl 1182.62121
[14] Gradshteyn, I. S.; Ryzhik, M., Table of Integrals, Series, and Products (1980), Academic Press: Academic Press New York · Zbl 0521.33001
[15] Granger, C. W.L., The past and future of empirical finance: some personal comments, J. Econometrics, 129, 35-40 (2005) · Zbl 1334.62004
[16] Halgreen, C., Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions, Zeit. Wahrsch. Verw. Gebiete, 47, 13-17 (1979) · Zbl 0377.60020
[17] Heyde, C. C.; Leonenko, N. N., Student processes, Adv. in Appl. Probab., 37, 342-365 (2005) · Zbl 1081.60035
[18] Jurek, Zbigniew J.; Vervaat, Wim, An integral representation for selfdecomposable banach space valued random variables, Probab. Theory Related Fields, 62, 2, 247-262 (1983) · Zbl 0488.60028
[19] Lee, R., Option pricing by transform methods: extensions, unification and error control, J. Comput. Finance, 7, 51-86 (2004)
[20] Leonenko, N. N.; Petherick, S.; Sikorskii, A., The student subordinator model with dependence for risky asset returns, Comm. Statist. Theory Methods, 40, 3509-3522 (2011) · Zbl 1277.62212
[21] Leonenko, N. N.; Petherick, S.; Sikorskii, A., A normal inverse Gaussian model for a risky asset with dependence, Statist. Probab. Lett., 82, 109-115 (2012) · Zbl 1236.91135
[22] Leonenko, N. N.; Petherick, S.; Sikorskii, A., Fractal activity time models for risky asset with dependence and generalized hyperbolic distributions, Stoch. Anal. Appl., 30, 476-492 (2012) · Zbl 1251.91062
[23] Nicolato, E.; Venardos, E., Option pricing in stochastic volatility models of the Ornstein-Uhlenbeck type, Math. Finance, 13, 445-466 (2003) · Zbl 1105.91020
[24] Rydberg, T. H., Generalized hyperbolic diffusion processes with applications in finance, Math. Finance, 9, 183-201 (1999) · Zbl 0980.91039
[25] Sato, K. I., Lévy Processes and Infinitely Divisible Distributions (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0973.60001
[26] Titchmarsh, E. C., Theory of Fourier Integrals (1975), Oxford University Press: Oxford University Press London · Zbl 0336.30001
[27] Watson, G. N.A., A Treatise on the Theory of Bessel Functions (1944), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0063.08184
[28] Wolfe, Stephen James, On a continuous analogue of the stochastic difference equation \(X_n = \rho X_{n - 1} + B_n\), Stochastic Process. Appl., 12, 3, 301-312 (1982) · Zbl 0482.60062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.