×

Stationary-increment variance-gamma and \(t\) models: simulation and parameter estimation. (English) Zbl 07882743

Summary: We detail a method of simulating data from long range dependent processes with variance-gamma or \(t\) distributed increments, test various estimation procedures [method of moments (MOM), product-density maximum likelihood (PMLE), non-standard minimum \(\chi^2\) and empirical characteristic function estimation] on the data, and assess the performance of each. The investigation is motivated by the apparent poor performance of the MOM technique using real data [A. Tjetjep and E. Seneta, Int. Stat. Rev. 74, No. 1, 109–126 (2006; Zbl 1131.62096)]; and the need to assess the performance of PMLE for our dependent data models. In the simulations considered the product-density method performs favourably.
© 2008 The Authors. Journal compilation © 2008 International Statistical Institute

MSC:

60Gxx Stochastic processes
62Pxx Applications of statistics
91Bxx Mathematical economics

Citations:

Zbl 1131.62096
Full Text: DOI

References:

[1] Beran, J. (1994). Statistics for Long‐Memory Processes. New York : Chapman and Hall. · Zbl 0869.60045
[2] Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F.G. (1954). Bateman Manuscript Project: Tables of Integral Transforms (vol 2). New York : McGraw‐Hill. · Zbl 0055.36401
[3] Fama, E.F. (1965). The behavior of stock‐market pricesJ. Bus., 38, 34-105.
[4] Finlay, R. & Seneta, E. (2006). Stationary‐increment student and variance‐gamma processes. J. Appl. Prob., 43, 441-453. Correction p. 1207. · Zbl 1103.62103
[5] Finlay, R. & Seneta, E. (2007). A gamma activity time process with noninteger parameter and self‐similar limit. J. Appl. Prob., 44, 950-959. · Zbl 1181.60053
[6] Fung, T. & Seneta, E. (2007). Tailweight, quantiles and kurtosis: A study of competing distributions. Oper. Res. Lett., 35, 448-454. · Zbl 1120.62012
[7] Hansen, L.P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50, 1029-1054. · Zbl 0502.62098
[8] Heyde, C.C. & Liu, S. (2001). Empirical realities for a minimal description risky asset model. The need for fractal features. J. Korean Math. Soc. (5), 38, 1047-1059. · Zbl 0999.91070
[9] Heyde, C.C. & Leonenko, N.N. (2005). Student processes. Adv. Appl. Prob., 37, 342-365. · Zbl 1081.60035
[10] Hogg, R. & Craig, A. (1978). Introduction to Mathematical Statistics, New York : Macmillan.
[11] Hurst, S.R., Platen, E. & Rachev, S.T. (1997). Subordinated market index models: A comparison. Financ. Eng. Jpn. Mark., 4, 97-124. · Zbl 1153.91788
[12] Madan, D.B. & Seneta, E. (1990). The variance gamma (V.G.) model for share market returns. J. Bus., 63, 511-524.
[13] Madan, D.B., Carr, P.P. & Chang, E.C. (1998). The variance‐gamma process and option pricing. Eur. Finance Rev., 2, 79-105. · Zbl 0937.91052
[14] Seneta, E. (2004). Fitting the variance‐gamma model to financial data. Stochastic methods and their applications. J. Appl. Probab. Spec., 41(A), 177-187. · Zbl 1058.91043
[15] Tjetjep, A. & Seneta, E. (2006). Skewed normal variance‐mean models for asset pricing and the method of moments. Int. Statist. Rev., 74, 109-126. · Zbl 1131.62096
[16] Yu, J. (2004). Empirical characteristic function estimation and its applications. Econometric Rev., 23, 93-123. · Zbl 1123.62030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.