×

Multiple tilings associated to \(d\)-Bonacci beta-expansions. (English) Zbl 1445.11005

Summary: Let \(\beta \in (1,2)\) be a Pisot unit and consider the symmetric \(\beta \)-expansions. We give a necessary and sufficient condition for the associated Rauzy fractals to form a tiling of the contractive hyperplane. For \(\beta \) a \(d\)-Bonacci number, i.e., Pisot root of \(x^d-x^{d-1}-\dots -x-1\) we show that the Rauzy fractals form a multiple tiling with covering degree \(d-1\).

MSC:

11A63 Radix representation; digital problems
11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
37B10 Symbolic dynamics
52C23 Quasicrystals and aperiodic tilings in discrete geometry

Software:

SageMath; pgf

References:

[1] Akiyama, S.: On the boundary of self affine tilings generated by Pisot numbers. J. Math. Soc. Jpn. 54(2), 283-308 (2002) · Zbl 1032.11033 · doi:10.2969/jmsj/05420283
[2] Akiyama, S., Scheicher, K.: Symmetric shift radix systems and finite expansions. Math. Pannon. 18(1), 101-124 (2007) · Zbl 1164.11007
[3] Barge, M.: Pure discrete spectrum for a class of one-dimensional substitution tiling systems. Discrete Contin. Dyn. Syst. 36(3), 1159-1173 (2016) · Zbl 1338.37014 · doi:10.3934/dcds.2016.36.1159
[4] Barge, M.: The Pisot conjecture for \(\beta \)-substitutions. Ergodic Theory Dyn. Syst. 38(2), 444-472 (2018) · Zbl 1457.37025 · doi:10.1017/etds.2016.44
[5] Brauer, A.: On algebraic equations with all but one root in the interior of the unit circle. Math. Nachr. 4, 250-257 (1951) · Zbl 0042.01501 · doi:10.1002/mana.3210040123
[6] Ito, S., Rao, H.: Atomic surfaces, tilings and coincidence. I. Irreducible case. Isr. J. Math. 153, 129-155 (2006) · Zbl 1143.37013 · doi:10.1007/BF02771781
[7] Kalle, C., Steiner, W.: Beta-expansions, natural extensions and multiple tilings associated with Pisot units. Trans. Am. Math. Soc. 364(5), 2281-2318 (2012) · Zbl 1295.11010 · doi:10.1090/S0002-9947-2012-05362-1
[8] Li, T.-Y., Yorke, J.A.: Ergodic transformations from an interval into itself. Trans. Am. Math. Soc. 235, 183-192 (1978) · Zbl 0371.28017 · doi:10.1090/S0002-9947-1978-0457679-0
[9] Neukirch, J.: Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, Translated from the 1992 German original and with a note by Norbert Schappacher, with a foreword by G. Harder (1999) · Zbl 0956.11021
[10] Rauzy, G.: Nombres algébriques et substitutions. Bull. Soc. Math. France 110(2), 147-178 (1982) · Zbl 0522.10032 · doi:10.24033/bsmf.1957
[11] Rao, H., Wen, Z.-Y., Yang, Y.M.: Dual systems of algebraic iterated function systems. Adv. Math. 253, 63-85 (2014) · Zbl 1294.28011 · doi:10.1016/j.aim.2013.11.010
[12] Siegel A., Thuswaldner, J.M.: Topological properties of Rauzy fractals. Mém. Soc. Math. Fr. (N.S.) , no. 118, 140 (2009) · Zbl 1229.28021
[13] The Sage Group, Sage: Open source mathematical software (version 6.4) (2014). http://www.sagemath.org [2015-03-01]
[14] Thurston, W.P.: Groups, tilings and finite state automata, AMS Colloquium lectures (1989)
[15] Tantau, T. et al.:, TikZ & PGF (version 3.0.0) (2014). http://sourceforge.net/projects/pgf. 01 March 2015 · Zbl 1291.68411
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.