×

Dual systems of algebraic iterated function systems. (English) Zbl 1294.28011

Let \((V, \Gamma)\) be a directed graph with vertex set \(V=[1, \dots, N]\) and edge set \(\Gamma\). Let \(F=(f_{\gamma}: {\mathbb R}^n \mapsto {\mathbb R}^n )_{\gamma\in\Gamma}\) be a family of contraction maps. The triple \((V, \Gamma, F)\) is called a graph-directed iterated function system (GIFS). Let \(\beta\) be an algebraic number. Denote \({\mathbb B}(\beta)\) the field generated by \(\beta\) and the rational field. A GIFS is called algebraic if there exists an algebraic number \(\beta>1\) such that \(f_{\gamma}(x) = (x+b_{\gamma})/\beta\) with \(b_{\gamma}\in {\mathbb B}(\beta)\) for each \(\gamma\). The main result of the paper is a construction of dual iterated function systems for algebraic GIFS. The paper contains results concerning feasible Pisot systems, Rauzy fractals and Rauzy-Thurston tilings.

MSC:

28A80 Fractals
Full Text: DOI

References:

[1] Akiyama, S., Self affine tiling and Pisot numeration system, (Number Theory and Its Applications. Number Theory and Its Applications, Kyoto, 1997. Number Theory and Its Applications. Number Theory and Its Applications, Kyoto, 1997, Dev. Math., vol. 2 (1999), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 7-17 · Zbl 0999.11065
[2] Akiyama, S., Cubic Pisot units with finite beta expansions, (Algebraic Number Theory and Diophantine Analysis. Algebraic Number Theory and Diophantine Analysis, Graz, 1998 (2000), de Gruyter: de Gruyter Berlin), 11-26 · Zbl 1001.11038
[3] Akiyama, S., On the boundary of self-affine tilings generated by Pisot numbers, J. Math. Soc. Japan, 54, 2, 283-308 (2002) · Zbl 1032.11033
[4] Akiyama, S.; Scheicher, K., Symmetric shift radix systems and finite expansions, Math. Pannon., 18, 1, 101-124 (2007) · Zbl 1164.11007
[5] Akiyama, S.; Barat, G.; Berthé, V.; Siegel, A., Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions, Monatsh. Math., 155, 377-419 (2008) · Zbl 1190.11005
[6] Arnoux, P.; Ito, S., Pisot substitution and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, 8, 2, 181-207 (2001) · Zbl 1007.37001
[7] Baker, V.; Barge, M.; Kwapisz, J., Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to \(β\)-shifts, Numération, Pavages, Substitutions. Numération, Pavages, Substitutions, Ann. Inst. Fourier (Grenoble), 56, 7, 2213-2248 (2006) · Zbl 1138.37008
[8] Barge, M.; Diamond, B., Coincidence for substitutions of Pisot type, Bull. Soc. Math. France, 130, 4, 619-626 (2002) · Zbl 1028.37008
[9] Barge, M.; Kwapisz, J., Geometric theory of unimodular Pisot substitutions, Amer. J. Math., 128, 5, 1219-1282 (2006) · Zbl 1152.37011
[10] Berthé, V.; Siegel, A., Tilings associated with beta-numeration and substitutions, Integers, 5, 3 (2005), A2, 46 pp · Zbl 1139.37008
[11] Berthé, V.; Siegel, A., Purely periodic \(β\)-expansions in the Pisot non-unit case, J. Number Theory, 127, 2, 153-172 (2007) · Zbl 1197.11139
[12] Canterini, V.; Siegel, A., Geometric representation of primitive substitutions of Pisot type, Trans. Amer. Math. Soc., 353, 12, 5121-5144 (2001) · Zbl 1142.37302
[13] Ei, H.; Ito, S.; Rao, H., Atomic surfaces, tilings and coincidences. II. Reducible case, Numération, Pavages, Substitutions. Numération, Pavages, Substitutions, Ann. Inst. Fourier (Grenoble), 56, 7, 2285-2313 (2006) · Zbl 1119.52013
[14] Falconer, K., Techniques in Fractal Geometry (1997), John Wiley & Sons Ltd.: John Wiley & Sons Ltd. Chichester · Zbl 0869.28003
[15] Fogg, P., Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Math., vol. 1794 (2002), Springer: Springer Berlin · Zbl 1014.11015
[16] Frettloh, D., Self-dual tilings with respect to star-duality, Theoret. Comput. Sci., 391, 39-50 (2008) · Zbl 1133.05018
[17] Frougny, C.; Solomyak, B., Finite beta-expansions, Ergodic Theory Dynam. Systems, 12, 4, 713-723 (1992) · Zbl 0814.68065
[18] Frougny, C.; Steiner, W., Minimal weight expansions in Pisot bases, J. Math. Cryptol., 2, 2, 365-392 (2008) · Zbl 1170.11003
[19] Furukado, M.; Ito, S.; Rao, H., Geometric realizations of hyperbolic unimodular substitutions, (Fractal Geometry and Stochastics IV. Fractal Geometry and Stochastics IV, Progr. Probab., vol. 61 (2009), Birkhäuser Verlag: Birkhäuser Verlag Basel), 251-268 · Zbl 1181.37008
[20] Gelbrich, G., Fractal Penrose tiles II: Tiles with fractal boundary as duals of Penrose triangles, Aequationes Math., 54, 108-116 (1997) · Zbl 0981.52014
[21] He, X.-G.; Lau, K.-S., On a generalized dimension of self-affine fractals, Math. Nachr., 281, 8, 1142-1158 (2008) · Zbl 1153.28005
[22] Ito, S.; Rao, H., Purely periodic \(β\)-expansions with Pisot unit base, Proc. Amer. Math. Soc., 133, 953-964 (2005) · Zbl 1099.11062
[23] Ito, S.; Rao, H., Atomic surfaces, tilings and coincidences I: Irreducible case, Israel J. Math., 153, 129-155 (2006) · Zbl 1143.37013
[24] Kalle, C.; Steiner, W., Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Amer. Math. Soc., 364, 5, 2281-2318 (2012) · Zbl 1295.11010
[25] Kenyon, R., Self-replicating tilings, (Symbolic Dynamics and Its Applications. Symbolic Dynamics and Its Applications, New Haven, CT, 1991. Symbolic Dynamics and Its Applications. Symbolic Dynamics and Its Applications, New Haven, CT, 1991, Contemp. Math., vol. 135 (1992), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 239-263 · Zbl 0770.52013
[26] Lagarias, J.; Wang, Y., Integral self-affine tiles in \(R^n\). I. Standard and nonstandard digit sets, J. Lond. Math. Soc. (2), 54, 1, 161-179 (1996) · Zbl 0893.52014
[27] Luo, J.; Yang, Y.-M., On single-matrix graph-directed iterated function systems, J. Math. Anal. Appl., 372, 1, 8-18 (2010) · Zbl 1250.28006
[28] Mauldin, D.; Williams, S., Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., 309, 811-829 (1988) · Zbl 0706.28007
[29] Meyer, Y., Algebraic Numbers and Harmonic Analysis, North-Holland Math. Library, vol. 2 (1972), North-Holland: North-Holland Amsterdam · Zbl 0267.43001
[30] Moody, R., Model sets: A survey, (Axel, F.; Denoyer, F.; Gazeau, J. P., From Quasicrystal to More Complex Systems (2000), EDP Sciences/Springer: EDP Sciences/Springer Les Ulis/Berlin), 145-166
[31] Praggastis, B., Numeration systems and Markov partitions from self-similar tilings, Trans. Amer. Math. Soc., 351, 8, 3315-3349 (1999) · Zbl 0984.11008
[32] Rauzy, G., Nombres algébriques et substitution, Bull. Soc. Math. France, 110, 147-178 (1982) · Zbl 0522.10032
[33] Siegel, A., Pure discrete spectrum dynamical system and periodic tiling associated with a substitution, Ann. Inst. Fourier (Grenoble), 54, 2, 341-381 (2004) · Zbl 1083.37009
[34] Sirvent, V.; Wang, Y., Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math., 206, 465-485 (2002) · Zbl 1048.37015
[35] Thurston, W., Groups, Tilings, and Finite State Automata, Amer. Math. Soc. Colloq. Publ. (1989), Amer. Math. Soc.: Amer. Math. Soc. Boulder, CO, Lectures
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.