×

Partitions into powers of an algebraic number. (English) Zbl 07846623

In this article, the authors discuss the investigation of general partitions as an analogous, further they study partitions of complex number as sum of positive powers of fixed algebraic number \(\beta\), and they show that when \(\beta\) is real quadratic then the number of partitions are always finite if and only if some conjugate of \(\beta > 1\). Also they discuss when partition function attains all positive integer as values when \(\beta\) satisfyies certain conditions. The necessary proofs are given in the form of two theorems and some related results. The authors also proposed four open problems, but one problem was solved by A. Dubickas [“Representations of a number in an arbitrary base with unbounded digits”, Georgian Math. J. (to appear)], when the this article was under review.

MSC:

11P81 Elementary theory of partitions
11P84 Partition identities; identities of Rogers-Ramanujan type
11R11 Quadratic extensions

References:

[1] Akiyama, S.: Positive finiteness of number systems. Number Theory, Developmental Math, vol. 15, pp. 1-10. Springer, New York (2006) · Zbl 1211.11011
[2] Andrews, GE; Fraenkel, AS; Sellers, JA, Characterizing the number of \(m\)-ary partitions modulo \(m\), Am. Math. Mon., 122, 9, 880-885, 2015 · Zbl 1342.05013 · doi:10.4169/amer.math.monthly.122.9.880
[3] Brunotte, H., A remark on roots of polynomials with positive coefficients, Manuscripta Math., 129, 4, 523-524, 2009 · Zbl 1182.11053 · doi:10.1007/s00229-009-0273-4
[4] Churchhouse, RF, Congruence properties of the binary partition function, Proc. Camb. Philos. Soc., 66, 371-376, 1969 · Zbl 0182.06904 · doi:10.1017/S0305004100045072
[5] de Bruijn, NG, On Mahler’s partition problem, Proc. Kon. Ned. Akad. v. Wet. Amsterdam, 51, 659-669, 1948 · Zbl 0030.34502
[6] Dress, A.; Scharlau, R., Indecomposable totally positive numbers in real quadratic fields, J. Number Theory, 14, 292-306, 1982 · Zbl 0507.12002 · doi:10.1016/0022-314X(82)90064-6
[7] Dubickas, A., On roots of polynomials with positive coefficients, Manuscripta Math., 123, 353-356, 2007 · Zbl 1172.11036 · doi:10.1007/s00229-007-0101-7
[8] Dubickas, A.: Representations of a number in an arbitrary base with unbounded digits. Georgian Math. J. to appear. doi:10.1515/gmj-2023-2118 (2024)
[9] Euler, L.: De partitione numerorum. Nov. com. acad. sci. Petro. 3, 125-169 (1750/1751)
[10] Frougny, C.: How to Write Integers in Non-integer Base. LATIN ’92. Lecture Notes in Computer Science, vol. 583, pp. 154-164. Springer, Berlin (1992)
[11] Guimond, LS; Masáková, Z.; Pelantová, E., Arithmetics of beta-expansions, Acta Arith., 112, 23-40, 2004 · Zbl 1060.11065 · doi:10.4064/aa112-1-2
[12] Gupta, H., On \(m\)-ary partitions, Proc. Camb. Philos. Soc., 71, 343-345, 1972 · Zbl 0225.10008 · doi:10.1017/S0305004100050581
[13] Handelman, D.: Positive polynomials and product type actions of compact groups. Mem. Am. Math. Soc. 320 (1985) · Zbl 0571.46045
[14] Hejda, T.; Kala, V., Additive structure of totally positive quadratic integers, Manuscripta Math., 163, 263-278, 2020 · Zbl 1450.11113 · doi:10.1007/s00229-019-01143-8
[15] Jang, S.W., Kim, B.M., Kim, K.H.: The Euler-Glaisher theorem over totally real number fields. arxiv:2311.18515 (2023)
[16] Jang, S.W., Kim, B.M., Kim, K.H.: The Sylvester theorem and the Rogers-Ramanujan identities over totally real number fields. arxiv:2311.18514 (2023)
[17] Kovács, B.; Pethö, A., Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. (Szeged), 55, 3-4, 287-299, 1991 · Zbl 0760.11002
[18] Kalle, C.; Steiner, W., Beta-expansions, natural extensions and multiple tiling associated with Pisot units, Trans. Am. Math. Soc., 364, 2281-2318, 2012 · Zbl 1295.11010 · doi:10.1090/S0002-9947-2012-05362-1
[19] Mahler, K., On a special functional equation, J. Lond. Math. Soc., 15, 115-123, 1940 · JFM 66.0563.02 · doi:10.1112/jlms/s1-15.2.115
[20] Meinardus, G., Über das Partitionenproblem eines reell-quadratischen Zahlkörpers, Math. Ann., 126, 343-361, 1953 · Zbl 0051.28004 · doi:10.1007/BF01343168
[21] Mitsui, T., On the partition problem in an algebraic number field, Tokyo J. Math., 1, 2, 189-236, 1978 · Zbl 0397.10048 · doi:10.3836/tjm/1270216495
[22] Pennington, WB, On Mahler’s partition problem, Ann. Math., 57, 531-546, 1953 · Zbl 0050.04005 · doi:10.2307/1969735
[23] Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. H., 8, 477-493, 1957 · Zbl 0079.08901 · doi:10.1007/BF02020331
[24] Reznick, B.: Some Binary Partition Functions. Analytic Number Theory, Progress in Mathematics, vol. 85, pp. 451-477. Birkhäuser, Boston (1990) · Zbl 0721.11037
[25] Rødseth, Ø., Some arithmetical properties of \(m\)-ary partitions, Proc. Camb. Philos. Soc., 68, 447-453, 1970 · Zbl 0206.01905 · doi:10.1017/S0305004100046259
[26] Rødseth, Ø., Sellers, J.A.: Binary partitions revisited. J. Comb. Theory Ser. A 98, 33-45 (2002) · Zbl 1004.05007
[27] Schmidt, K., On periodic expansions of Pisot numbers and Salem numbers, Bull. Lond. Math. Soc., 12, 269-278, 1980 · Zbl 0494.10040 · doi:10.1112/blms/12.4.269
[28] Sidorov, N., Almost every number has a continuum of \(\beta \)-expansions, Am. Math. Mon., 110, 838-842, 2003 · Zbl 1049.11085
[29] Stern, D., Zindulka, M.: Partitions in real quadratic fields. arxiv:2310.09980 (2023)
[30] Żmija, B., Recurrence sequences connected with the \(m \)-ary partition function and their divisibility properties, J. Number Theory, 211, 322-370, 2020 · Zbl 1471.11040 · doi:10.1016/j.jnt.2019.09.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.