×

Quasilinear Laplace equations and inequalities with fractional orders. (English) Zbl 1532.35489

Summary: For the fractional Sobolev space \(H^{s,p}\) on \({\mathbb{R}}^n\) of fundamental interest in geometric potential analysis and partial differential equations, this paper presents a much more subtle dual-capacitary-constructive approach to achieve weak solutions \(u\in H^{s,p}\) of not only the fractional \({{(p,+)}}\)-Laplacian and the fractional \({(p,-)}\)-Laplacian equations (cf. Theorems 1.2–1.3) \[ \pm \text{div}^s_{\pm }\big (|\nabla^s_{\pm } u|^{p-2}\nabla_{\pm }^su\big ) =\text{ either } f\in L^\frac{pn}{(p-1)n+sp} \text{ or } \delta_0 \text{ -- the Dirac mass at the origin} \] but also the fractional \({{(p,+)}} \)-Laplacian and the fractional \({{(p,-)}}\)-Laplacian inequalities (cf. Theorems 1.4–1.5) \[ \pm \text{div}^s_{\pm }\big (|\nabla^s_{\pm } u|^{p-2}\nabla_{\pm }^s u\big )\ge u^q\ge 0. \]

MSC:

35R11 Fractional partial differential equations
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35R45 Partial differential inequalities and systems of partial differential inequalities
42B30 \(H^p\)-spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
58E35 Variational inequalities (global problems) in infinite-dimensional spaces
Full Text: DOI

References:

[1] Adams, DR, On the existence of capacitary strong type estimates in \({\mathbb{R} }^n\), Ark. Mat., 14, 125-140 (1976) · Zbl 0325.31008
[2] Adams, DR, A sharp inequality of J. Moser for higher order derivatives, Ann. Math., 128, 385-398 (1986) · Zbl 0672.31008
[3] Adams, DR, Choquet integrals in potential theory, Publ. Mat., 42, 3-66 (1998) · Zbl 0923.31006
[4] Adams, DR; Hedberg, LI, Function Spaces and Potential Theory (1996), Berlin: Springer, Berlin
[5] Adams, DR; Xiao, J., Strong type estimates for homogeneous Besov capacities, Math. Ann., 325, 695-709 (2003) · Zbl 1056.31008
[6] Aikawa, H.; Essén, MR, Potential Theory: Selected Topics. Lecture Notes in Mathematics (1996), Berlin: Springer, Berlin · Zbl 0865.31001
[7] Bidaut-Véron, M-F; Pohozaev, S., Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math., 84, 1-49 (2001) · Zbl 1018.35040
[8] Biler, P.; Imbert, C.; Karch, G., The nonlocal porous medium equation: Barenblatt profiles and other weak solutions, Arch. Ration. Mech. Anal., 215, 497-529 (2015) · Zbl 1308.35197
[9] Bucur, C., Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal., 15, 657-699 (2016) · Zbl 1334.35383
[10] Caffarelli, L.; Vazquez, JL, Nonlinear porous medium flow with fractional potential pressure, Arch. Ration. Mech. Anal., 202, 537-565 (2011) · Zbl 1264.76105
[11] Capella, A.; Dávila, J.; Dupaigne, L.; Sire, Y., Regularity of radial extremal solutions for some non local semilinear equations, Commun. Partial Differ. Equ., 36, 1353-1384 (2011) · Zbl 1231.35076
[12] Caristi, G.; D’Ambrosio, L.; Mitidieri, E., Liouville theorems for some nonlinear inequalities, Proc. Steklov Inst. Math., 260, 90-111 (2008) · Zbl 1233.35207
[13] Caristi, G.; Mitidieri, E., Some Liouville theorems for nonlinear elliptic inequalities, Doklady Math., 79, 118-124 (2009) · Zbl 1387.35207
[14] Cheng, SY; Yau, S-T, Differential equations on Riemannian manifolds and their geometric applications, Commun. Pure Appl. Math., 28, 333-354 (1975) · Zbl 0312.53031
[15] Choquet, G., Theory of capacities, Ann. Inst. Fourier (Grenoble), 5, 1953-54, 131-295 (1955) · Zbl 0064.35101
[16] Comi, GE; Stefani, G., A distributional approach to fractional Sobolev spaces and fractional variation: existence of blow-up, J. Funct. Anal., 277, 3373-3435 (2019) · Zbl 1437.46039
[17] Dahlberg, BEJ, Regularity properties of Riesz potentials, Indiana Univ. Math. J., 28, 2, 257-268 (1979) · Zbl 0413.31003
[18] Filippucci, R., Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70, 8, 2903-2916 (2009) · Zbl 1165.35487
[19] Filippucci, R.; Pucci, P.; Souplet, P., A Liouville-type theorem for an elliptic equation with superquadratic growth in the gradient, Adv. Nonlinear Stud., 20, 2, 245-251 (2020) · Zbl 1440.35106
[20] Gidas, B.; Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34, 525-598 (1981) · Zbl 0465.35003
[21] Grigor’yan, A., Existence of the Green function on a manifold (in Russian), Uspekhi Mat. Nauk., 38(1), 229, 161-162 (1983) · Zbl 0542.35025
[22] Grigor’yan, A., The existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds (in Russian), Mat. Sb. (N. S.), 128, 3, 354-363 (1985) · Zbl 0596.31004
[23] Grigor’yan, A.; Sun, Y., On non-negative solutions of the inequality \(\Delta u+u^\le 0\) on Riemannian manifolds, Commun. Pure Appl. Math., 67, 1336-1352 (2014) · Zbl 1296.58011
[24] Holopainen, I., Positive solutions of nonlinear elliptic equations on Riemannian manifolds, Proc. Lond. Math. Soc., 65, 651-672 (1992) · Zbl 0739.53030
[25] Holopainen, I., Volume growth, Green’s functions, and parabolicity of ends, Duke Math. J., 97, 319-346 (1999) · Zbl 0955.31003
[26] Karp, L.; Yau, S-T, Subharmonic functions, harmonic mappings and isometric immersions, Seminar on Differential Geometry, Annals of Mathematical Studies (1982), Princeton: Princeton University Press, Princeton · Zbl 0487.53046
[27] Liu, L.; Xiao, J., Fractional Hardy-Sobolev \(L^1\)-embedding per capacity-duality, Appl. Comput. Harmon. Anal., 51, 17-55 (2021) · Zbl 1460.31015
[28] Liu, L.; Xiao, J., Fractional differential operators and divergence equations, Adv. Anal. Geom., 3, 385-420 (2021) · Zbl 1479.35679
[29] Liu, L.; Xiao, J., Divergence and curl with fractional order, J. Math. Pures Appl., 165, 190-231 (2022) · Zbl 1496.35434
[30] Malý, J.; Ziemer, WP, Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs (1997), Providence: American Mathematical Society, Providence · Zbl 0882.35001
[31] Mazowiecka, K.; Schikorra, A., Fractional div-curl quantities and applications to nonlocal geometric equations, J. Funct. Anal., 275, 1-44 (2018) · Zbl 1440.42114
[32] Meerschaert, MM; Mortensen, J.; Wheatcraft, SW, Fractional vector calculus for fractional advection-dispersion, Phys. A, 367, 181-190 (2006)
[33] Meyers, NG, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26, 255-292 (1970) · Zbl 0242.31006
[34] Mitidieri, E.; Pohozaev, SI, Absence of global positive solutions of quasilinear elliptic inequalities (Russian), Dokl. Akad. Nauk., 359, 456-460 (1998) · Zbl 0976.35100
[35] Mitidieri, E.; Pokhozhaev, SI, Absence of positive solutions for quasilinear elliptic problems in \({\mathbb{R} }^N \) (Russian), Tran. Math. Inst. Steklova, 20, 192-222 (1999)
[36] Ni, W-M; Serrin, J., Nonexistence theorems for singular solutions of quasilinear partial differential equations, Commun. Pure Appl. Math., 39, 3, 379-399 (1986) · Zbl 0602.35031
[37] Schikorra, A.; Spector, D.; Van Schaftingen, J., An \(L^1\)-type estimate for Riesz potentials, Rev. Mat. Iberoam., 33, 291-303 (2017) · Zbl 1375.47039
[38] Schikorra, A.; Shieh, T-T; Spector, D., Regularity for a fractional \(p\)-Laplace equation, Commun. Contemp. Math., 20, 1, 1750003 (2018) · Zbl 1386.35455
[39] Serrin, J.; Zou, H., Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189, 79-142 (2002) · Zbl 1059.35040
[40] Shieh, T-T; Spector, D., On a new class of fractional partial differential equations, Adv. Calc. Var., 8, 321-336 (2015) · Zbl 1330.35510
[41] Shieh, T-T; Spector, D., On a new class of fractional partial differential equations II, Adv. Calc. Var., 11, 289-307 (2018) · Zbl 1451.35257
[42] Šilhavý, M., Fractional vector analysis based on invariance requirements (critique of coordinate approaches), Contin. Mech. Thermodyn., 32, 1, 207-228 (2020) · Zbl 1443.26004
[43] Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60, 67-112 (2007) · Zbl 1141.49035
[44] Souplet, P., Sharp condition for the Liouville property in a class of nonlinear elliptic inequalities, Colloq. Math., 164, 1, 43-52 (2021) · Zbl 1467.35151
[45] Stein, EM, Singular Integrals and Differentiability Properties of Functions (1970), Princeton: Princeton University Press, Princeton · Zbl 0207.13501
[46] Stein, EM; Weiss, G., On the theory of harmonic functions of several variables. I. The theory of \(H^p\)-spaces, Acta Math., 103, 25-62 (1960) · Zbl 0097.28501
[47] Sun, Y., On nonexistence of positive solutions of quasi-linear inequality on Riemannian manifolds, Proc. Am. Math. Soc., 143, 2969-2984 (2015) · Zbl 1319.35312
[48] Triebel, H., Theory of Function Spaces. Monographs in Mathematics (1983), Basel: Birkhäuser Verlag, Basel · Zbl 0546.46028
[49] Varopoulos, N.Th.: Potential theory and diffusion of Riemannian manifolds, In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, vols. I, II, Wadsworth Math. Ser., Wadsworth, Belmont, CA, pp. 821-837 (1983) · Zbl 0558.31009
[50] Wang, Y.; Xiao, J., A constructive approach to positive solutions of \(\Delta_p u+f(u,\nabla u)\le 0\) on Riemannian manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 1497-1507 (2016) · Zbl 1353.58009
[51] Wang, Y.; Xiao, J., A uniqueness principle for \(u^p\le (-\Delta )^\frac{\alpha }{2}u\) in the Euclidean space, Commun. Contemp. Math., 18, 6, 1650019 (2016) · Zbl 1351.35256
[52] Yosida, K., Functional Analysis (1980), Berlin: Springer, Berlin · Zbl 0152.32102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.