×

Liouville theorems for some nonlinear inequalities. (English) Zbl 1233.35207

Proc. Steklov Inst. Math. 260, 90-111 (2008) and Tr. Mat. Inst. Steklova 260, 97-118 (2008).
Summary: We prove various Liouville theorems for integral and differential inequalities on the whole \(\mathbb R^N\). The main tools we use throughout this paper are representation formulae for linear inequalities, the nonlinear capacity method and the weak form of Harnack’s inequality.

MSC:

35R45 Partial differential inequalities and systems of partial differential inequalities
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] M. F. Bidaut-Véron and S. I. Pohozaev, ”Nonexistence Results and Estimates for Some Nonlinear Elliptic Problems,” J. Anal. Math. 84, 1–49 (2001). · Zbl 1018.35040 · doi:10.1007/BF02788105
[2] G. Caristi, L. D’Ambrosio, and E. Mitidieri, ”Liouville Theorems and Representation Formulae for Higher Order Problems and Systems,” submitted to Milan J. Math.
[3] L. D’Ambrosio, E. Mitidieri, and S. I. Pohozaev, ”Representation Formulae and Inequalities for Solutions of a Class of Second Order Partial Differential Equations,” Trans. Am. Math. Soc. 358(2), 893–910 (2006). · Zbl 1081.35014 · doi:10.1090/S0002-9947-05-03717-7
[4] J. Heinonen, Lectures on Analysis on Metric Spaces (Springer, New York, 2001), Universitext. · Zbl 0985.46008
[5] Y. Y. Li, ”Remark on Some Conformally Invariant Integral Equations: The Method of Moving Spheres,” J. Eur. Math. Soc. 6(2), 153–180 (2004). · Zbl 1075.45006 · doi:10.4171/JEMS/6
[6] E. H. Lieb and M. Loss, Analysis (Am. Math. Soc., Providence, RI, 2001), Grad. Stud. Math. 14. · Zbl 0966.26002
[7] J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations (Am. Math. Soc., Providence, RI, 1997), Math. Surv. Monogr. 51.
[8] E. Mitidieri and S. I. Pohozaev, A Priori Estimates and Blow-up of Solutions to Nonlinear Partial Differential Equations and Inequalities (Nauka, Moscow, 2001), Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 234 [Proc. Steklov Inst. Math. 234 (2001)]. · Zbl 1074.35500
[9] E. Mitidieri and S. I. Pohozaev, ”Positivity Property of Solutions of Some Elliptic Inequalities on \(\mathbb{R}\)n,” Dokl. Akad. Nauk 393(2), 159–164 (2003) [Dokl. Math. 68, 339–344 (2003)].
[10] E. Mitidieri and S. I. Pohozaev, ”Liouville Theorems for Some Classes of Nonlinear Nonlocal Problems,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 248, 164–184 (2005) [Proc. Steklov Inst. Math. 248, 158–178 (2005)].
[11] J. Serrin and H. Zou, ”Cauchy-Liouville and Universal Boundedness Theorems for Quasilinear Elliptic Equations and Inequalities,” Acta Math. 189, 79–142 (2002). · Zbl 1059.35040 · doi:10.1007/BF02392645
[12] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton Univ. Press, Princeton, 1993). · Zbl 0821.42001
[13] D. W. Stroock, Probability Theory: An Analytic View (Cambridge Univ. Press, Cambridge, 1993). · Zbl 0925.60004
[14] A. Torchinsky, Real-Variable Methods in Harmonic Analysis (Academic, Orlando, 1986). · Zbl 0621.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.