×

Path instabilities of axisymmetric bodies falling or rising under the action of gravity and hydrodynamic forces in a Newtonian fluid. (English) Zbl 1391.76100

Bodnár, Tomáš (ed.) et al., Particles in flows. Based on the summer course and workshop, Prague, Czech Republic, August 2014. Cham: Birkhäuser/Springer (ISBN 978-3-319-60281-3/hbk; 978-3-319-60282-0/ebook). Advances in Mathematical Fluid Mechanics, 397-451 (2017).
Summary: The chapter deals with the effect of instabilities on the paths of sedimenting or rising bodies in Newtonian fluids. To separate the effect of shape, we focus on axisymmetric objects. Spheres, discs, oblate spheroids and flat cylinders are all expected to follow vertical trajectories with axisymmetry axis aligned with the trajectory. This is, indeed, the case, however, this regime remains stable only if viscous effects are sufficiently strong. The loss of stability of the vertical regime leads to a large variety of trajectories depending on the details of shape, namely their flatness (expressed by aspect ratio for cylinders or spheroids), their inertia and viscous effects (expressed by some equivalent of Reynolds number). Defined in this manner, the problem is basically that of axisymmetry breaking.{ } Since a significant part of dynamics is expected to arise in the wake, we first focus on axisymmetry breaking of wakes of fixed axisymmetric bodies, the sphere being considered as a prototypical case. We show that the scenario is dominated by two bifurcations following systematically, with increasing Reynolds number, in the order of the regular one as primary and a Hopf one as secondary. The weakly non-linear analysis points out the relevance of Fourier azimuthal decomposition serving as an optimal numerical tool for all presented simulations. Next, the free body degrees of freedom are accounted for. The interplay of the regular and Hopf bifurcations still dominates, however, the scenario is significantly different for spheres and flat objects. The presented parametric study shows that trajectories of spheres become very rapidly chaotic. As an example of flat object, nominally infinitely thin disc is investigated. In this case the Hopf bifurcation is the primary one. The scenario is remarkable by strong subcritical effects due to the significant role of inertia of the combined motion of the solid and of the surrounding fluid.
For the entire collection see [Zbl 1381.35003].

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
76D25 Wakes and jets
76E09 Stability and instability of nonparallel flows in hydrodynamic stability
76E30 Nonlinear effects in hydrodynamic stability
76M22 Spectral methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] G. Bouchet, M. Mebarek, J. Dušek, Hydrodynamic forces acting on a rigid fixed sphere in early transitional regimes. Eur. J. Mech. B Fluids 25, 321-336 (2006) · Zbl 1093.76014 · doi:10.1016/j.euromechflu.2005.10.001
[2] M. Chrust, Etude numérique de la chute d’objets axisymétriques dans un fluide newtonien. PhD thesis, Université de Strasbourg, 2012
[3] M. Chrust, G. Bouchet, J. Dušek, Parametric study of the transition in the wake of oblate spheroids and flat cylinders. J. Fluid Mech. 665, 199-208 (2010) · Zbl 1225.76090 · doi:10.1017/S0022112010004878
[4] M. Chrust, G. Bouchet, J. Dušek, Effect of solid body degrees of freedom on the path instabilities of freely falling or rising flat cylinders. J. Fluids Struct. 47, 55-70 (2014) · doi:10.1016/j.jfluidstructs.2013.09.016
[5] M. Chrust, C. Dauteille, T. Bobinski, J. Rokicki, S. Goujon-Durand, J.E. Wesfreid, G. Bouchet, J. Dušek, Effect of inclination on the transition scenario in the wake of fixed disks and flat cylinders. J. Fluid Mech. 770, 189-209 (2015) · doi:10.1017/jfm.2015.133
[6] D. Fabre, F. Auguste, J. Magnaudet, Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20, 051702 (2008) · Zbl 1182.76238 · doi:10.1063/1.2909609
[7] D. Fabre, J. Tchoufag, J. Magnaudet, The steady oblique path of buoyancy-driven disks and spheres. J. Fluid Mech. 707, 24-36 (2012) · Zbl 1275.76064 · doi:10.1017/jfm.2012.231
[8] S.B. Field, M. Klaus, M.G. Moore, Chaotic dynamics of falling disks. Nature 388, 252-254 (1997) · doi:10.1038/40817
[9] B. Ghidersa, J. Dušek, Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere. J. Fluid Mech. 423, 33-69 (2000) · Zbl 0977.76028 · doi:10.1017/S0022112000001701
[10] M. Golubitsky, I. Stewart, Singularities and Groups in Bifurcation Theory, vol. II (Springer, New York/Berlin/Heidelberg/London/Paris/Tokyo, 1988) · Zbl 0691.58003 · doi:10.1007/978-1-4612-4574-2
[11] M. Horowitz, C.H.K. Williamson, The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. J. Fluid Mech. 651, 251-294 (2010) · Zbl 1189.76152 · doi:10.1017/S0022112009993934
[12] M. Jenny, J. Dušek, Efficient numerical method for the direct numerical simulation of the flow past a single light moving spherical body in transitional regimes. J. Comput. Phys. 194, 215-232 (2004) · Zbl 1136.76365 · doi:10.1016/j.jcp.2003.09.004
[13] M. Jenny, G. Bouchet, J. Dušek, Nonvertical ascension or fall of a free sphere in a Newtonian fluid. Phys. Fluids 15, L9-L12 (2003) · Zbl 1185.76185 · doi:10.1063/1.1529179
[14] M. Jenny, J. Dušek, G. Bouchet, Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 201-239 (2004) · Zbl 1065.76068 · doi:10.1017/S0022112004009164
[15] M. Kotouč, G. Bouchet, J. Dušek, Transition to turbulence in the wake of a fixed sphere in mixed convection. J. Fluid Mech. 625, 205-248 (2009) · Zbl 1171.76384 · doi:10.1017/S0022112008005557
[16] P. Meliga, J.M. Chomaz, D. Sipp, Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159-189 (2009) · Zbl 1183.76721 · doi:10.1017/S0022112009007290
[17] R. Natarajan, A. Acrivos, The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323-344 (1993) · Zbl 0780.76027 · doi:10.1017/S0022112093002150
[18] S.A. Orszag, Fourier series on spheres. Mon. Weather Rev. 102, 56-75 (1974) · doi:10.1175/1520-0493(1974)102<0056:FSOS>2.0.CO;2
[19] J. Tchoufag, D. Fabre, J. Magnaudet, Global linear stability analysis of the wake and path of buoyancy-driven disks and thin cylinders. J. Fluid Mech. 740, 278-311 (2014) · doi:10.1017/jfm.2013.642
[20] C.H.J. Veldhuis, A. Biesheuvel, An experimental study of the regimes of motion of spheres falling or ascending freely in a Newtonian fluid. Int. J. Multiphase Flow 33(10), 1074-1087 (2007) · doi:10.1016/j.ijmultiphaseflow.2007.05.002
[21] W. Zhou, J. Dušek, Chaotic states and order in the chaos of the paths of freely falling and ascending spheres. Int. J. Multiphase Flow 75, 205-223 (2015) · doi:10.1016/j.ijmultiphaseflow.2015.05.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.