×

Transition to turbulence in the wake of a fixed sphere in mixed convection. (English) Zbl 1171.76384

Summary: The thermal effect on axisymmetry breaking and transition to turbulence in the wake of a fixed heated sphere is investigated in the mixed convection configurations commonly known as ‘assisting’ and ‘opposing’ flows in which the buoyancy tends, respectively, to accelerate and decelerate the flow. The study is carried out in the Ri-Re parameter plane (Ri being the mixed convection parameter - the Richardson number) for two values of Prandtl number \(-0.72\) (\(\approx\) air and many gases) and 7 (\(\approx\) water). We show that convection affects considerably the transition (as compared to that observed in the wake of an unheated sphere) even at moderate Richardson numbers. The latter are taken to be positive in assisting flow and negative in opposing one. In this notation, it can be said that convection shifts the primary-instability threshold to higher Reynolds numbers with increasing Richardson number. In assisting flow, the primary bifurcation is always regular, but at \(Ri \geq 0.6\) it appears in azimuthal subspaces associated with higher azimuthal wavenumbers \(m > 1\). The transition scenario is characterized by a large variety of regimes explainable by nonlinear interactions between different azimuthal subspaces. On the side of higher (positive) Richardson numbers the axisymmetric flow is found stable up to \(Re = 1400\) at \(Pr = 0.72\) and \(Ri = 0.7\). In opposing flow, the \(m = 1\) subspace is always the most unstable, but the regular bifurcation gives way to a Hopf one at \(Ri < -0.1\). Close to the junction of both bifurcations a similar variety of regimes precedes the transition to chaos as in assisting flow. On the side of negative Richardson numbers the primary (Hopf) bifurcation threshold is found as low as \(Re = 100\) at \(Ri = -0.25\) and at both investigated Prandtl numbers. After a primary periodic regime characterized by vortex shedding with a symmetry plane, the transition proceeds via a series of increasingly irregular helical regimes.

MSC:

76F06 Transition to turbulence
76R05 Forced convection
76R10 Free convection
76D25 Wakes and jets
76M22 Spectral methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] DOI: 10.1002/(SICI)1097-0363(19990815)30:73.0.CO;2-3 · doi:10.1002/(SICI)1097-0363(19990815)30:73.0.CO;2-3
[2] DOI: 10.1016/j.jaerosci.2004.09.011 · doi:10.1016/j.jaerosci.2004.09.011
[3] DOI: 10.1017/S0022112096008592 · doi:10.1017/S0022112096008592
[4] DOI: 10.1007/BF00190392 · doi:10.1007/BF00190392
[5] DOI: 10.1016/j.ijheatmasstransfer.2007.10.005 · Zbl 1143.80319 · doi:10.1016/j.ijheatmasstransfer.2007.10.005
[6] Klyachko, J. Heat Transfer 85 pp 355– (1963) · doi:10.1115/1.3686124
[7] DOI: 10.1016/S0021-8502(00)00057-4 · doi:10.1016/S0021-8502(00)00057-4
[8] DOI: 10.1017/S0022112098003206 · doi:10.1017/S0022112098003206
[9] DOI: 10.1016/0017-9310(95)00259-6 · Zbl 0964.76537 · doi:10.1016/0017-9310(95)00259-6
[10] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[11] DOI: 10.1017/S0022112004009164 · Zbl 1065.76068 · doi:10.1017/S0022112004009164
[12] DOI: 10.1016/j.jcp.2003.09.004 · Zbl 1136.76365 · doi:10.1016/j.jcp.2003.09.004
[13] DOI: 10.1017/S0022112069000097 · Zbl 0179.56802 · doi:10.1017/S0022112069000097
[14] DOI: 10.1017/S0022112000001701 · Zbl 0977.76028 · doi:10.1017/S0022112000001701
[15] Yuge, J. Heat Transfer 82 pp 214– (1960) · doi:10.1115/1.3679912
[16] DOI: 10.1016/0017-9310(82)90147-8 · Zbl 0494.76089 · doi:10.1016/0017-9310(82)90147-8
[17] DOI: 10.1017/S0022112004002721 · Zbl 1065.76008 · doi:10.1017/S0022112004002721
[18] DOI: 10.1017/S0022112003003938 · Zbl 1075.76059 · doi:10.1017/S0022112003003938
[19] Wu, Phys. Fluids 19 pp 1– (2007)
[20] Wong, J. Heat Transfer 108 pp 860– (1986)
[21] DOI: 10.1016/0017-9310(93)90128-S · Zbl 0815.76076 · doi:10.1016/0017-9310(93)90128-S
[22] DOI: 10.1063/1.870391 · Zbl 1149.76579 · doi:10.1063/1.870391
[23] DOI: 10.1016/0894-1777(95)00098-4 · doi:10.1016/0894-1777(95)00098-4
[24] DOI: 10.1016/0017-9310(88)90143-3 · doi:10.1016/0017-9310(88)90143-3
[25] DOI: 10.1016/0735-1933(90)90080-4 · doi:10.1016/0735-1933(90)90080-4
[26] DOI: 10.1103/PhysRevE.57.R3695 · doi:10.1103/PhysRevE.57.R3695
[27] Clift, Bubbles, Drops and Particles (1978)
[28] Strogatz, Nonlinear Dynamics and Chaos (1994)
[29] DOI: 10.1016/S0017-9310(05)80271-6 · doi:10.1016/S0017-9310(05)80271-6
[30] DOI: 10.1016/0021-9991(84)90128-1 · Zbl 0535.76035 · doi:10.1016/0021-9991(84)90128-1
[31] DOI: 10.1016/0017-9310(77)90116-8 · Zbl 0379.76077 · doi:10.1016/0017-9310(77)90116-8
[32] DOI: 10.1103/PhysRevLett.83.80 · doi:10.1103/PhysRevLett.83.80
[33] DOI: 10.1016/j.euromechflu.2005.10.001 · Zbl 1093.76014 · doi:10.1016/j.euromechflu.2005.10.001
[34] DOI: 10.1016/j.ijheatmasstransfer.2007.05.033 · Zbl 1152.80304 · doi:10.1016/j.ijheatmasstransfer.2007.05.033
[35] DOI: 10.1017/S0022112093002150 · Zbl 0780.76027 · doi:10.1017/S0022112093002150
[36] DOI: 10.1063/1.1476305 · Zbl 1185.76044 · doi:10.1063/1.1476305
[37] DOI: 10.1017/S0022112098002110 · Zbl 0932.76015 · doi:10.1017/S0022112098002110
[38] Ayyaswamy, Combustion Dynamics of Moving Droplets (1999)
[39] Mucoglu, J. Heat Transfer 100 pp 542– (1978) · doi:10.1115/1.3450846
[40] DOI: 10.1016/S0017-9310(01)00350-7 · doi:10.1016/S0017-9310(01)00350-7
[41] DOI: 10.1016/j.jaerosci.2004.12.002 · doi:10.1016/j.jaerosci.2004.12.002
[42] DOI: 10.1016/0376-0421(84)90005-8 · doi:10.1016/0376-0421(84)90005-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.