×

An elliptic hypergeometric function approach to branching rules. (English) Zbl 1462.05351

Summary: We prove Macdonald-type deformations of a number of well-known classical branching rules by employing identities for elliptic hypergeometric integrals and series. We also propose some conjectural branching rules and allied conjectures exhibiting a novel type of vanishing behaviour involving partitions with empty 2-cores.

MSC:

05E05 Symmetric functions and generalizations
05E10 Combinatorial aspects of representation theory
20C33 Representations of finite groups of Lie type
33D05 \(q\)-gamma functions, \(q\)-beta functions and integrals
33D52 Basic orthogonal polynomials and functions associated with root systems (Macdonald polynomials, etc.)
33D67 Basic hypergeometric functions associated with root systems

References:

[1] Albion, Seamus P. and Rains, Eric M. and Warnaar, S. Ole, AFLT-type Selberg integrals · Zbl 1483.33007
[2] Andrews, George E., On {\(q\)}-analogues of the {W}atson and {W}hipple summations, SIAM Journal on Mathematical Analysis, 7, 3, 332-336, (1976) · Zbl 0339.33007 · doi:10.1137/0507026
[3] Baker, T. H. and Forrester, P. J., Transformation formulas for multivariable basic hypergeometric series, Methods and Applications of Analysis, 6, 2, 147-164, (1999) · Zbl 0956.33013 · doi:10.4310/MAA.1999.v6.n2.a2
[4] Bressoud, D. and Ismail, M. E. H. and Stanton, D., Change of base in {B}ailey pairs, Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan, 4, 4, 435-453, (2000) · Zbl 0980.33013 · doi:10.1023/A:1009824218230
[5] de Bruijn, N. G., On some multiple integrals involving determinants, The Journal of the Indian Mathematical Society. New Series, 19, 133-151, (1955) · Zbl 0068.24904
[6] Coskun, Hasan and Gustafson, Robert A., Well-poised {M}acdonald functions {\(W_\lambda \)} and {J}ackson coefficients {\( \omega_\lambda \)} on {\(BC_n\)}, Jack, {H}all–{L}ittlewood and {M}acdonald polynomials, Contemp. Math., 417, 127-155, (2006), Amer. Math. Soc., Providence, RI · Zbl 1154.05059 · doi:10.1090/conm/417/07919
[7] van Diejen, Jan Felipe and Emsiz, Erdal, Pieri formulas for {M}acdonald’s spherical functions and polynomials, Mathematische Zeitschrift, 269, 1-2, 281-292, (2011) · Zbl 1291.05212 · doi:10.1007/s00209-010-0727-0
[8] van Diejen, Jan Felipe and Emsiz, Erdal, Branching rules for symmetric hypergeometric polynomials, Representation Theory, Special Functions and {P}ainlev\'e Equations – {RIMS} 2015, Adv. Stud. Pure Math., 76, 125-153, (2018), Math. Soc. Japan, Tokyo · Zbl 1409.33009 · doi:10.2969/aspm/07610125
[9] van Diejen, Jan Felipe and Emsiz, Erdal, Branching formula for {M}acdonald–{K}oornwinder polynomials, Journal of Algebra, 444, 606-614, (2015) · Zbl 1329.33027 · doi:10.1016/j.jalgebra.2015.08.009
[10] van Diejen, J. F. and Spiridonov, V. P., An elliptic {M}acdonald–{M}orris conjecture and multiple modular hypergeometric sums, Mathematical Research Letters, 7, 5-6, 729-746, (2000) · Zbl 0981.33013 · doi:10.4310/MRL.2000.v7.n6.a6
[11] van Diejen, J. F. and Spiridonov, V. P., Elliptic {S}elberg integrals, International Mathematics Research Notices, 2001, 20, 1083-1110, (2001) · Zbl 1010.33010 · doi:10.1155/S1073792801000526
[12] Frenkel, Igor B. and Turaev, Vladimir G., Elliptic solutions of the {Y}ang–{B}axter equation and modular hypergeometric functions, The {A}rnold–{G}elfand Mathematical Seminars, 171-204, (1997), Birkh\"auser Boston, Boston, MA · Zbl 0974.17016 · doi:10.1007/978-1-4612-4122-5_9
[13] Gasper, George and Rahman, Mizan, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, xxvi+428, (2004), Cambridge University Press, Cambridge · Zbl 1129.33005 · doi:10.1017/CBO9780511526251
[14] Gustafson, Robert A., A generalization of {S}elberg’s beta integral, American Mathematical Society. Bulletin. New Series, 22, 1, 97-105, (1990) · Zbl 0693.33001 · doi:10.1090/S0273-0979-1990-15852-5
[15] Hoshino, Ayumu and Shiraishi, Jun’ichi, Macdonald polynomials of type {\(C_n\)} with one-column diagrams and deformed {C}atalan numbers, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 14, 101, 33 pages, (2018) · Zbl 1401.33014 · doi:10.3842/SIGMA.2018.101
[16] Hoshino, Ayumu and Shiraishi, Jun’ichi, Branching rules for {K}oornwinder polynomials with one column diagrams and matrix inversions, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 16, 084, 28 pages, (2020) · Zbl 1455.33010 · doi:10.3842/SIGMA.2020.084
[17] King, R. C., Branching rules for classical {L}ie groups using tensor and spinor methods, Journal of Physics. A. Mathematical and General, 8, 429-449, (1975) · Zbl 0301.20029 · doi:10.1088/0305-4470/8/4/004
[18] Koike, Kazuhiko and Terada, Itaru, Young-diagrammatic methods for the representation theory of the classical groups of type \(B_n, C_n, D_n\), Journal of Algebra, 107, 2, 466-511, (1987) · Zbl 0622.20033 · doi:10.1016/0021-8693(87)90099-8
[19] Koornwinder, Tom H., Askey–{W}ilson polynomials for root systems of type {\(BC\)}, Hypergeometric Functions on Domains of Positivity, {J}ack Polynomials, and Applications ({T}ampa, {FL}, 1991), Contemp. Math., 138, 189-204, (1992), Amer. Math. Soc., Providence, RI · Zbl 0797.33014 · doi:10.1090/conm/138/1199128
[20] Krattenthaler, C., Identities for classical group characters of nearly rectangular shape, Journal of Algebra, 209, 1, 1-64, (1998) · Zbl 0914.20038 · doi:10.1006/jabr.1998.7531
[21] Kwon, Jae-Hoon, Combinatorial extension of stable branching rules for classical groups, Transactions of the American Mathematical Society, 370, 9, 6125-6152, (2018) · Zbl 1430.17047 · doi:10.1090/tran/7104
[22] Lam, Thomas and Lapointe, Luc and Morse, Jennifer and Shimozono, Mark, The poset of {\(k\)}-shapes and branching rules for {\(k}-{S\)}chur functions, Memoirs of the American Mathematical Society, 223, 1050, vi+101 pages, (2013) · Zbl 1292.05258 · doi:10.1090/S0065-9266-2012-00655-1
[23] Lascoux, Alain and Warnaar, S. Ole, Branching rules for symmetric functions and {\( \mathfrak{sl}_n\)} basic hypergeometric series, Advances in Applied Mathematics, 46, 1-4, 424-456, 2794032, (2011) · Zbl 1227.05261 · doi:10.1016/j.aam.2010.01.012
[24] Littlewood, Dudley E., The theory of group characters and matrix representations of groups, viii+292, (1940), Oxford University Press, New York · Zbl 1090.20001
[25] Macdonald, I. G., Symmetric functions and {H}all polynomials, Oxford Mathematical Monographs, x+475, (1995), The Clarendon Press, Oxford University Press, New York · Zbl 0899.05068
[26] Macdonald, I. G., Orthogonal polynomials associated with root systems, S\'eminaire Lotharingien de Combinatoire, 45, Art. B45a, 40 pages, (2000) · Zbl 1032.33010
[27] Mimachi, Katsuhisa, A duality of {M}ac{D}onald–{K}oornwinder polynomials and its application to integral representations, Duke Mathematical Journal, 107, 2, 265-281, (2001) · Zbl 1012.33018 · doi:10.1215/S0012-7094-01-10723-0
[28] Naito, Satoshi and Sagaki, Daisuke, An approach to the branching rule from {\({\mathfrak{sl}}_{2n}(\mathbb C)\)} to {\({\mathfrak{sp}}_{2n}(\mathbb C)\)} via {L}ittelmann’s path model, Journal of Algebra, 286, 1, 187-212, (2005) · Zbl 1089.17005 · doi:10.1016/j.jalgebra.2004.12.014
[29] Noumi, Masatoshi and Shiraishi, Jun’ichi, A direct approach to the bispectral problem for the {R}uijsenaars–{M}acdonald \(q\)-difference operators
[30] Ito, Masahiko and Noumi, Masatoshi, Derivation of a {\(BC_n\)} elliptic summation formula via the fundamental invariants, Constructive Approximation. An International Journal for Approximations and Expansions, 45, 1, 33-46, (2017) · Zbl 1366.33014 · doi:10.1007/s00365-016-9340-8
[31] Okada, Soichi, Applications of minor summation formulas to rectangular-shaped representations of classical groups, Journal of Algebra, 205, 2, 337-367, (1998) · Zbl 0915.20023 · doi:10.1006/jabr.1997.7408
[32] Okounkov, A., {\({\rm BC}\)}-type interpolation {M}acdonald polynomials and binomial formula for {K}oornwinder polynomials, Transformation Groups, 3, 2, 181-207, (1998) · Zbl 0941.17005 · doi:10.1007/BF01236432
[33] Okounkov, Andre\u{\i} and Olshanski, Grigori, Shifted {S}chur functions. {II}. {T}he binomial formula for characters of classical groups and its applications, Kirillov’s Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, 181, 245-271, (1998), Amer. Math. Soc., Providence, RI · Zbl 0941.17008 · doi:10.1090/trans2/181/08
[34] Proctor, Robert A., Shifted plane partitions of trapezoidal shape, Proceedings of the American Mathematical Society, 89, 3, 553-559, (1983) · Zbl 0525.05007 · doi:10.2307/2045516
[35] Rains, Eric M., {\({\rm BC}_n\)}-symmetric polynomials, Transformation Groups, 10, 1, 63-132, (2005) · Zbl 1080.33018 · doi:10.1007/s00031-005-1003-y
[36] Rains, Eric M., {\(BC_n\)}-symmetric {A}belian functions, Duke Mathematical Journal, 135, 1, 99-180, (2006) · Zbl 1101.33012 · doi:10.1215/S0012-7094-06-13513-5
[37] Rains, Eric M., Limits of elliptic hypergeometric integrals, Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan, 18, 3, 257-306, (2009) · Zbl 1178.33021 · doi:10.1007/s11139-007-9055-3
[38] Rains, Eric M., Transformations of elliptic hypergeometric integrals, Annals of Mathematics. Second Series, 171, 1, 169-243, (2010) · Zbl 1209.33014 · doi:10.4007/annals.2010.171.169
[39] Rains, Eric M., Elliptic {L}ittlewood identities, Journal of Combinatorial Theory. Series A, 119, 7, 1558-1609, (2012) · Zbl 1263.33011 · doi:10.1016/j.jcta.2012.03.001
[40] Rains, Eric M., Multivariate quadratic transformations and the interpolation kernel, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 14, 019, 69 pages, (2018) · Zbl 1387.33027 · doi:10.3842/SIGMA.2018.019
[41] Rains, Eric M. and Vazirani, Monica, Vanishing integrals of {M}acdonald and {K}oornwinder polynomials, Transformation Groups, 12, 4, 725-759, (2007) · Zbl 1202.33027 · doi:10.1007/s00031-007-0058-3
[42] Rains, Eric M. and Warnaar, S. Ole, Bounded {L}ittlewood identities, Memoirs of the American Mathematical Society · Zbl 1467.05001
[43] Rosengren, Hjalmar, A proof of a multivariable elliptic summation formula conjectured by {W}arnaar, {\(q\)}-series with applications to combinatorics, number theory, and physics ({U}rbana, {IL}, 2000), Contemp. Math., 291, 193-202, (2001), Amer. Math. Soc., Providence, RI · Zbl 1040.33014 · doi:10.1090/conm/291/04903
[44] Rosengren, Hjalmar and Schlosser, Michael J., Multidimensional matrix inversions and elliptic hypergeometric series on root systems, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 16, 088, 21 pages, (2020) · Zbl 1460.33021 · doi:10.3842/SIGMA.2020.088
[45] Rosengren, Hjalmar and Warnaar, S. O., Elliptic hypergeometric functions associated with root systems, Encyclopedia of Special Functions: The Askey-Bateman Project, Vol. 2, Multivariable Special Functions, 159-186, (2020), Cambridge University Press, Cambridge
[46] Ruijsenaars, S. N. M., First order analytic difference equations and integrable quantum systems, Journal of Mathematical Physics, 38, 2, 1069-1146, (1997) · Zbl 0877.39002 · doi:10.1063/1.531809
[47] Schumann, Bea and Torres, Jacinta, A non-{L}evi branching rule in terms of {L}ittelmann paths, Proceedings of the London Mathematical Society. Third Series, 117, 5, 1077-1100, (2018) · Zbl 1436.22003 · doi:10.1112/plms.12175
[48] Shiraishi, Junichi, A conjecture about raising operators for {M}acdonald polynomials, Letters in Mathematical Physics, 73, 1, 71-81, (2005) · Zbl 1079.33015 · doi:10.1007/s11005-005-7648-6
[49] Spiridonov, V. P., On the elliptic beta function, Russian Math. Surveys, 56, 1(337), 185-186, (2001) · Zbl 0997.33009 · doi:10.1070/rm2001v056n01ABEH000374
[50] Spiridonov, V. P., Theta hypergeometric series, Asymptotic Combinatorics with Application to Mathematical Physics ({S}t. {P}etersburg, 2001), NATO Sci. Ser. II Math. Phys. Chem., 77, 307-327, (2002), Kluwer Acad. Publ., Dordrecht · Zbl 1041.11032 · doi:10.1007/978-94-010-0575-3_15
[51] Stanley, Richard P., Enumerative combinatorics, {V}ol. 2, Cambridge Studies in Advanced Mathematics, 62, xii+581, (1999), Cambridge University Press, Cambridge · Zbl 0928.05001 · doi:10.1017/CBO9780511609589
[52] Warnaar, S. O., Summation and transformation formulas for elliptic hypergeometric series, Constructive Approximation. An International Journal for Approximations and Expansions, 18, 4, 479-502, (2002) · Zbl 1040.33013 · doi:10.1007/s00365-002-0501-6
[53] Warnaar, S. Ole, Extensions of the well-poised and elliptic well-poised {B}ailey lemma, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae. New Series, 14, 3-4, 571-588, (2003) · Zbl 1054.33013 · doi:10.1016/S0019-3577(03)90061-9
[54] Warnaar, S. Ole, Summation formulae for elliptic hypergeometric series, Proceedings of the American Mathematical Society, 133, 2, 519-527, (2005) · Zbl 1059.33023 · doi:10.1090/S0002-9939-04-07558-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.