×

A \(\Sigma\)-\(\Upsilon\) two-fluid model with dynamic local topology detection: application to high-speed droplet impact. (English) Zbl 07505598

Summary: A numerical methodology resolving flow complexities arising from the coexistence of both multiscale processes and flow regimes is presented. The methodology employs the compressible Navier-Stokes equations of two interpenetrating fluid media using the two-fluid formulation; this allows for compressibility and slip velocity effects to be considered. On-the-fly criteria switching between a sharp and a diffuse interface within the Eulerian-Eulerian framework along with dynamic interface sharpening is developed, based on an advanced local flow topology detection algorithm. The sharp interface regimes with dimensions larger than the grid size are resolved using the VOF method. For the dispersed flow regime, the methodology incorporates an additional transport equation for the surface-mass fraction (\(\Sigma\)-\(\Upsilon\)) for estimating the interface surface area between the two phases. To depict the advantages of the proposed multiscale two-fluid approach, a high-speed water droplet impact case has been examined and evaluated against new experimental data; these refer to a millimetre size droplet impacting a solid dry smooth surface at a velocity as high as 150 m/s, which corresponds to a Weber number of \(7.6 \times 10^5\). Droplet splashing is followed by the formation of highly dispersed secondary cloud of droplets, with sizes ranging from 10 {\micro}m close to the wall to less than 1 {\micro}m forming at the later stages of droplet fragmentation. Additionally, under the investigated impact conditions, compressibility effects dominate the early stages of droplet splashing. A strong shock wave forms and propagates inside the droplet, where transonic Mach numbers occur; local Mach numbers up to 2.5 are observed for the expelled surrounding gas outside the droplet. Relative velocities between the two fluids are also significant; local values on the tip of the injected water film up to 5 times higher than the initial impact velocity are observed. The proposed numerical approach is found to capture relatively accurately the flow phenomena and provide additional information regarding the produced flow structure dimensions, which is not available from the experiment.

MSC:

76-XX Fluid mechanics
74-XX Mechanics of deformable solids

Software:

InterFOAM; AVL

References:

[1] Andreini, A., Development of a turbulent liquid flux model for Eulerian-Eulerian multiphase flow simulations, Int. J. Multiph. Flow, 81, 88-103 (2016), Elsevier Ltd.
[2] Anez, J., Eulerian-Lagrangian spray atomization model coupled with interface capturing method for diesel injectors, Int. J. Multiph. Flow (2018), Elsevier Ltd.
[3] Antonini, C.; Amirfazli, A.; Marengo, M., Drop impact and wettability: from hydrophilic to superhydrophobic surfaces, Phys. Fluids, 24, 10 (2012)
[4] Avl, FIRE v2013 Manuals (2013), AVL LIST GmbH: AVL LIST GmbH Graz, Austria
[5] Beig, S. A.; Aboulhasanzadeh, B.; Johnsen, E., Temperatures produced by inertially collapsing bubbles near rigid surfaces, J. Fluid Mech., 852, 105-125 (2018) · Zbl 1415.76627
[6] Berlemont, A.; Desjonqueres, P.; Gouesbet, G., Particle Lagrangian simulation in turbulent flows, Int. J. Multiph. Flow, 16, 1, 19-34 (1990) · Zbl 1134.76493
[7] Bertola, V., An impact regime map for water drops impacting on heated surfaces, Int. J. Heat Mass Transf., 85, 430-437 (2015), Elsevier Ltd.
[8] Bhaga, D.; Weber, M. E., Bubbles in viscous liquids: shapes, wakes and velocities, J. Fluid Mech., 105, 61-85 (1981)
[9] Boileau, M., Investigation of two-fluid methods for large eddy simulation of spray combustion in gas turbines, Flow Turbul. Combust., 80, 3, 291-321 (2008) · Zbl 1257.76035
[10] Boussinesq, J., Essai sur la théorie des eaux courantes, Mém. Prés. Divers Savants Acad. Sci., 23, 1, 1-680 (1877) · JFM 09.0680.04
[11] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[12] Černe, G.; Petelin, S.; Tiselj, I., Coupling of the interface tracking and the two-fluid models for the simulation of incompressible two-phase flow, J. Comput. Phys., 171, 2, 776-804 (2001) · Zbl 1065.76619
[13] Chesnel, J., Large eddy simulation of liquid jet primary breakup, At. Sprays, 21, 9, 711-736 (2011)
[14] Clift, R.; Grace, J.; Weber, M., Bubbles, Drops, and Particles (2005), Courier Corporation
[15] Cossali, G. E.; Santini, M.; Marengo, M., Single-drop empirical models for spray impact on solid walls: a review, At. Sprays, 15, 6, 699-736 (2005)
[16] Demoulin, F.-X., A new model for turbulent flows with large density fluctuations: application to liquid atomization, At. Sprays, 17, 4, 315-346 (2007)
[17] Deshpande, S. S.; Anumolu, L.; Trujillo, M. F., Evaluating the performance of the two-phase flow solver interFoam, Comput. Sci. Discov., 5, 1 (2012)
[18] Drew, D. A., Mathematical modeling of two-phase flow, Annu. Rev. Fluid Mech. (1983) · Zbl 0569.76104
[19] Dukowicz, J., A particle-fluid numerical model for liquid sprays, J. Comput. Phys., 35, 229-253 (1980) · Zbl 0437.76051
[20] Fedkiw, R. P., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 2, 457-492 (1999) · Zbl 0957.76052
[21] Field, J. E.; Dear, J. P.; Ogren, J. E., The effects of target compliance on liquid drop impact, J. Appl. Phys., 65, 2, 533-540 (1989)
[22] García-Oliver, J. M., Diesel spray CFD simulations based on the Σ-Y Eulerian atomization modely, At. Sprays, 23, 1, 71-95 (2013)
[23] Gorokhovski, M. A.; Saveliev, V. L., Analyses of Kolmogorov’s model of breakup and its application into Lagrangian computation of liquid sprays under air-blast atomization, Phys. Fluids, 15, 1, 184-192 (2003) · Zbl 1185.76151
[24] Gorokhovski, M.; Herrmann, M., Modeling primary atomization, Annu. Rev. Fluid Mech., 40, 1, 343-366 (2008) · Zbl 1232.76058
[25] Guildenbecher, D. R.; Lopez-Rivera, C.; Sojka, P. E., Secondary atomization, Exp. Fluids, 46, 3, 371-402 (2009)
[26] Guo, Y.; Lian, Y.; Sussman, M., Investigation of drop impact on dry and wet surfaces with consideration of surrounding air, Phys. Fluids, 28, 7 (2016)
[27] Haller, K. K., Computational study of high-speed liquid droplet impact, J. Appl. Phys., 92, 5, 2821-2828 (2002)
[28] Herrmann, M., Detailed numerical simulations of the primary atomization of a turbulent liquid jet in crossflow, J. Eng. Gas Turbines Power, 132, 6, Article 061506 pp. (2010)
[29] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[30] Hysing, S., Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 60, 1259-1288 (2009) · Zbl 1273.76276
[31] Ishii, M.; Hibiki, T., Thermo-Fluid Dynamics of Two-Phase Flow (2011), Springer-Verlag: Springer-Verlag New York · Zbl 1209.76001
[32] Ishii, M.; Mishima, K., Two-fluid model and hydrodynamic constitutive relations, Nucl. Eng. Des., 82, 2-3, 107-126 (1984)
[33] Ishii, M.; Zuber, N., Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J., 25, 5, 843-855 (1979)
[34] Ivings, M. J.; Causon, D. M.; Toro, E. F., On Riemann solvers for compressible liquids, Int. J. Numer. Methods Fluids, 28, 3, 395-418 (1998) · Zbl 0918.76047
[35] Jadidi, M., Coupled level set and volume of fluid method in OpenFoam with application to compressible two-phase flow, (22nd Annual Conference of the CFD Society of Canada (2014))
[36] Josserand, C.; Thoroddsen, S. T., Drop impact on a solid surface, Annu. Rev. Fluid Mech., 48, 365-391 (2016) · Zbl 1356.76380
[37] Kandlikar, S. G.; Bapat, A. V., Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal, Heat Transf. Eng., 28, 11, 911-923 (2007)
[38] Kelbaliyev, G. I., Drag coefficients of variously shaped solid particles, drops, and bubbles, Theor. Found. Chem. Eng., 45, 3, 248-266 (2011)
[39] Kolev, N. I., Multiphase Flow Dynamics 2. Thermal and Mechanical Interactions (2007), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1225.76002
[40] Koukouvinis, P., Large eddy simulation of diesel injector including cavitation effects and correlation to erosion damage, Fuel, 175, 26-39 (2016), Elsevier Ltd.
[41] Kyriazis, N.; Koukouvinis, P.; Gavaises, M., Modelling cavitation during drop impact on solid surfaces, Adv. Colloid Interface Sci., 260, 46-64 (2018), Elsevier B.V.
[42] Lahey, R. T., The simulation of multidimensional multiphase flows, Nucl. Eng. Des., 235, 10-12, 1043-1060 (2005)
[43] Lebas, R., Numerical simulation of primary break-up and atomization: DNS and modelling study, Int. J. Multiph. Flow, 35, 3, 247-260 (2009), Elsevier Ltd.
[44] Liang, G.; Mudawar, I., Review of drop impact on heated walls, Int. J. Heat Mass Transf., 106, 103-126 (2017)
[45] Ma, T., A numerical study of spray/wall impingement based on droplet impact phenomenon, Int. J. Heat Mass Transf., 112, 401-412 (2017)
[46] Malgarinos, I., VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model, Adv. Colloid Interface Sci., 212, 1-20 (2014), Elsevier B.V.
[47] Marble, F. E.; Broadwell, J. E., The coherent flame model of the turbulent chemical reactions, Acta Astronaut., 4, 291-391 (1977)
[48] Marchisio, D. L., Quadrature method of moments for population-balance equations, AIChE J., 49, 5, 1266-1276 (2003)
[49] Marschall, H., Technische Universität München Lehrstuhl I für Technische Chemie Towards the Numerical Simulation of Multi-Scale Two-Phase Flows (2011)
[50] Moreira, A. L.N.; Moita, A. S.; Panão, M. R., Advances and challenges in explaining fuel spray impingement: how much of single droplet impact research is useful?, Prog. Energy Combust. Sci., 36, 5, 554-580 (2010)
[51] Mundo, C.; Sommerfeld, M.; Tropea, C., Droplet-wall collisions: experimental studies of the deformation and breakup process, Int. J. Multiph. Flow, 21, 2, 151-173 (1995) · Zbl 1134.76617
[52] Navarro-Martinez, S., Large eddy simulation of spray atomization with a probability density function method, Int. J. Multiph. Flow, 63, 11-22 (2014), Elsevier Ltd.
[53] Niu, Y. Y.; Wang, H. W., Simulations of the shock waves and cavitation bubbles during a three-dimensional high-speed droplet impingement based on a two-fluid model, Comput. Fluids, 134-135, 196-214 (2016), Elsevier Ltd. · Zbl 1390.76875
[54] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, vol. 153 (2006), Springer Science & Business Media
[55] Pan, K. L.; Tseng, K. C.; Wang, C. H., Breakup of a droplet at high velocity impacting a solid surface, Exp. Fluids, 48, 1, 143-156 (2010)
[56] Pei, Y., Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions, Combust. Flame, 162, 12, 4442-4455 (2015)
[57] Range, K.; Feuillebois, F., Influence of surface roughness on liquid drop impact, J. Colloid Interface Sci., 203, 1, 16-30 (1998)
[58] Rein, M., Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dyn. Res., 12, 2, 61-93 (1993)
[59] Roisman, I. V.; Lembach, A.; Tropea, C., Drop splashing induced by target roughness and porosity: the size plays no role, Adv. Colloid Interface Sci., 222, 615-621 (2015), Elsevier B.V.
[60] Rossinelli, D., 11 PFLOP/s simulations of cloud cavitation collapse, (Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (2013)), 1-13
[61] Rusche, H., Computational fluid dynamics of dispersed two-phase flows at high phase fractions (2002), PhD Thesis
[62] Saurel, R.; Petitpas, F.; Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows, J. Fluid Mech. (2008) · Zbl 1147.76060
[63] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech., 31, 1, 567-603 (1999)
[64] Schiller, L.; Naumann, A. Z., Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung, Ver. Deut. Ing., 77, 12, 318-320 (1933)
[65] Schügerl, K.; Bellgardt, K.-H., Bioreaction Engineering: Modeling and Control (2000), Springer-Verlag: Springer-Verlag Berlin, Heidelberg
[66] Sethian, J. A., A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci., 93, 4, 1591-1595 (1996) · Zbl 0852.65055
[67] Sharp, D. H., An overview of Rayleigh-Taylor instability, (International Conference on “Fronts, Interfaces and Patterns” (1983))
[68] Shinjo, J.; Umemura, A., Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation, Int. J. Multiph. Flow, 36, 7, 513-532 (2010), Elsevier Ltd.
[69] Shinjo, J.; Umemura, A., Surface instability and primary atomization characteristics of straight liquid jet sprays, Int. J. Multiph. Flow, 37, 10, 1294-1304 (2011), Elsevier Ltd.
[70] Shonibare, O. Y.; Wardle, K. E., Numerical investigation of vertical plunging jet using a hybrid multifluid-VOF multiphase CFD solver, Int. J. Chem. Eng., 2015 (2015)
[71] Strubelj, L.; Tiselj, I., Two-fluid model with interface sharpening, Int. J. Numer. Methods Eng., 85, 575-590 (2011) · Zbl 1217.76057
[72] Štrubelj, L.; Tiselj, I.; Mavko, B., Simulations of free surface flows with implementation of surface tension and interface sharpening in the two-fluid model, Int. J. Heat Fluid Flow, 30, 4, 741-750 (2009), Elsevier Inc.
[73] Theofanous, T. G., Aerobreakup of Newtonian and viscoelastic liquids, Annu. Rev. Fluid Mech., 43, 1, 661-690 (2011) · Zbl 1299.76217
[74] Thoroddsen, S. T.; Etoh, T. G.; Takehara, K., High-speed imaging of drops and bubbles, Annu. Rev. Fluid Mech., 40, 1, 257-285 (2008) · Zbl 1136.76002
[75] Thoroddsen, S. T.; Takehara, K.; Etoh, T. G., Micro-splashing by drop impacts, J. Fluid Mech., 706, 560-570 (2012) · Zbl 1275.76032
[76] Tomiyama, A., Terminal velocity of single bubbles in surface tension force dominant regime, Int. J. Multiph. Flow, 28, 9, 1497-1519 (2002) · Zbl 1137.76757
[77] Tomiyama, A.; Shimada, N., A numerical method for bubbly flow simulation based on a multi-fluid model, J. Press. Vessel Technol., 123, 4, 510-516 (2001)
[78] Tryggvason, G., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 2, 708-759 (2002) · Zbl 1047.76574
[79] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 1, 25-37 (1992) · Zbl 0758.76047
[80] Vallet, A.; Borghi, R., Modelisation eulerienne de l’atomisation d’un jet liquide, C. R. Acad. Sci., Sér. IIB, Méc. Phys. Astron., 327, 10, 1015-1020 (1999) · Zbl 0945.76088
[81] Vallet, A.; Burluka, A. A.; Borghi, R., Development of a Eulerian model for the “atomization” of a liquid jet, At. Sprays, 11, 6 (2001)
[82] Visser, C. W., Microdroplet impact at very high velocity, Soft Matter, 8, 41, 10732-10737 (2012)
[83] Visser, C. W., Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns, Soft Matter R. Soc. Chem., 11, 9, 1708-1722 (2015)
[84] Vujanović, M., Numerical modelling of diesel spray using the Eulerian multiphase approach, Energy Convers. Manag., 104, 160-169 (2015)
[85] Wardle, K. E.; Weller, H. G., Hybrid multiphase CFD solver for coupled dispersed/segregated flows in liquid-liquid extraction, Int. J. Chem. Eng., 2013, 1 (2013)
[86] Worthington, A. M., XXVIII. On the forms assumed by drops of liquids falling vertically on a horizontal plate, Proc. R. Soc. Lond., 25, 171-178, 261-272 (1877)
[87] Wu, W.; Xiang, G.; Wang, B., On high-speed impingement of cylindrical droplets upon solid wall considering cavitation effects, J. Fluid Mech., 857, 851-877 (2018) · Zbl 1415.76726
[88] Z. Wu, Y. Cao, Dynamics of initial drop splashing on a dry smooth surface, 2017, pp. 1-11.
[89] Xu, L.; Zhang, W. W.; Nagel, S. R., Drop splashing on a dry smooth surface, Phys. Rev. Lett., 94, 18, 1-4 (2005)
[90] Yarin, A. L., DROP IMPACT DYNAMICS: splashing, spreading, receding, bouncing…, Annu. Rev. Fluid Mech., 38, 1, 159-192 (2006) · Zbl 1097.76012
[91] Yarin, A. L.; Weiss, D. A., Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity, J. Fluid Mech., 283, 141-173 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.