×

Asymptotics for the resolvent equation associated to the game-theoretic \(p\)-Laplacian. (English) Zbl 1421.35164

Summary: We consider the (viscosity) solution \(u^\varepsilon\) of the elliptic equation \(\varepsilon^2 \Delta^G_p u=u\) in a domain (not necessarily bounded), satisfying \(u=1\) on its boundary. Here, \(\Delta^G_p\) is the game-theoretic or normalized \(p\)-Laplacian. We derive asymptotic formulas for \(\varepsilon\to 0^+\) involving the values of \(u^\varepsilon\), in the spirit of S. R. S. Varadhan’s work [Commun. Pure Appl. Math. 20, 431–455 (1967; Zbl 0155.16503)], and its \(q\)-mean on balls touching the boundary, thus generalizing that obtained by the second author and S. Sakaguchi for \(p=q=2\). As in a related parabolic problem, investigated in a previous work by the authors [J. Math. Pures Appl. (9) 126, 249–272 (2019; Zbl 1412.35191)], we link the relevant asymptotic behavior to the geometry of the domain.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J40 Boundary value problems for higher-order elliptic equations
35B40 Asymptotic behavior of solutions to PDEs
35Q91 PDEs in connection with game theory, economics, social and behavioral sciences

References:

[1] Chen, Yg; Giga, Y.; Goto, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differ Geom, 33, 749-786 (1991) · Zbl 0696.35087
[2] Crandall, M.; Ishii, H.; Lions, Pl, User’s guide to viscosity solutions of second order partial differential equations, Bull Am Math Soc, 27, 1-67 (1992) · Zbl 0755.35015
[3] Attouchi, A.; Parviainen, M., Hölder regularity for the gradient of the inhomogeneous parabolic normalized p-Laplacian, Commun Contemp Math (2016)
[4] Attouchi, A.; Parviainen, M.; Ruosteenoja, E., \(C^{1,}\) regularity for the normalized p-Poisson problem, J Math Pures Appl, 108, 9, 553-591 (2017) · Zbl 1375.35170
[5] Banerjee, A.; Garofalo, N., Gradient bounds and monotonicity of the energy for some nonlinear singular diffusion equations, Indiana Univ Math J, 62, 699-736 (2013) · Zbl 1296.35088
[6] Banerjee, A.; Garofalo, N., On the Dirichlet boundary value problem for the normalized p-Laplacian evolution, Commun Pure Appl Anal, 14, 1-21 (2015) · Zbl 1488.35295
[7] Does, K., An evolution equation involving the normalized p-Laplacian, Commun Pure Appl Anal, 10, 361-396 (2011) · Zbl 1229.35132
[8] Juutinen, P.; Kawohl, B., On the evolution governed by the infinity Laplacian, Math Ann, 335, 819-851 (2006) · Zbl 1110.35037
[9] Kawohl, B.; Horák, J., On the geometry of the p-Laplacian operator, Discrecte Contin. Dyn Syst Ser S, 10, 799-813 (2017) · Zbl 1368.35151
[10] Kawohl, B.; Krömer, S.; Kurtz, J., Radial eigenfunctions for the game-theoretic p-Laplacian on a ball, Differ Integral Equ, 27, 659-670 (2014) · Zbl 1340.35242
[11] Manfredi, Jj; Parviainen, M.; Rossi, Jd, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J Math Anal, 42, 2058-2081 (2010) · Zbl 1231.35107
[12] Manfredi, Jj; Parviainen, M.; Rossi, Jd, An asymptotic mean value characterization for p-harmonic functions, Proc Am Math Soc, 138, 881-889 (2010) · Zbl 1187.35115
[13] Peres, Y.; Sheffield, S., Tug-of-war with noise: a game-theoretic view of the p-Laplacian, Duke Math J, 145, 91-120 (2008) · Zbl 1206.35112
[14] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, Db, Tug-of-war and the infinity Laplacian, J Am Math Soc, 22, 167-210 (2009) · Zbl 1206.91002
[15] Baravdish, G.; Svensson, O.; Åström, F., On backward p-parabolic equations for image enhancement, Numer Funct Anal Optim, 36, 147-168 (2015) · Zbl 1314.35064
[16] Freidlin, Mi; Wentzell, Ad, Random perturbations of dynamical systems (1984), New York (NY): Springer-Verlag, New York (NY) · Zbl 0522.60055
[17] Varadhan, Srs, On the behavior of the fundamental solution of the heat equation with variable coefficients, Commun Pure Appl Math, 20, 431-455 (1967) · Zbl 0155.16503
[18] Evans, Lc; Ishii, H., A PDE approach to some asymptotics problem concerning random differential equations with small noise intensities, Ann Inst Henri Poincaré Anal Nonlinear, 2, 1-20 (1985) · Zbl 0601.60076
[19] Magnanini, R.; Sakaguchi, S., Matzoh ball soup: heat conductors with a stationary isothermic surface, Ann Math, 156, 931-946 (2002) · Zbl 1011.35066
[20] Magnanini, R.; Sakaguchi, S., Stationary isothermic surfaces for unbounded domains, Indiana Univ Math J, 56, 2723-2738 (2007) · Zbl 1140.35460
[21] Magnanini, R.; Sakaguchi, S., Stationary isothermic surfaces and some characterizations of the hyperplane in the N-dimensional Euclidean space, J Differ Equ, 248, 1112-1119 (2010) · Zbl 1213.35326
[22] Magnanini, R.; Sakaguchi, S., Matzoh ball soup revisited: the boundary regularity issue, Math Meth Appl Sci, 36, 2023-2032 (2013) · Zbl 1279.35062
[23] Magnanini, R.; Marini, M., The Matzoh Ball Soup problem: a complete characterization, Nonlinear Anal, 131, 170-181 (2016) · Zbl 1332.35132
[24] Magnanini, R.; Sakaguchi, S., Interaction between degenerate diffusion and shape of domain, Proc R Soc Edinburgh, 137A, 373-388 (2007) · Zbl 1120.35057
[25] Magnanini, R.; Sakaguchi, S., Nonlinear diffusion with a bounded stationary level surface, Ann Inst Henri Poincaré Anal Nonlinear, 27, 937-952 (2010) · Zbl 1194.35209
[26] Magnanini, R.; Sakaguchi, S., Interaction between nonlinear diffusion and geometry of domain, J Differ Equ, 252, 236-257 (2012) · Zbl 1243.35096
[27] Sakaguchi, S., Interaction between fast diffusion and geometry of domain, Kodai Math J, 37, 680-701 (2014) · Zbl 1317.35126
[28] Magnanini, R.; Peralta-Salas, D.; Sakaguchi, S., Stationary isothermic surfaces in Euclidean 3-space, Math Ann, 364, 97-124 (2016) · Zbl 1342.35131
[29] Magnanini, R.; Prajapat, J.; Sakaguchi, S., Stationary isothermic surfaces and uniformly dense domains, Trans Am Math Soc, 358, 4821-4841 (2006) · Zbl 1129.35005
[30] Sakaguchi, S., Two-phase heat conductors with a stationary isothermic surface, Rend Ist Mat Univ Trieste, 48, 167-187 (2016) · Zbl 1368.35157
[31] Sakaguchi, S., Two-phase heat conductors with a stationary isothermic surface and their related elliptic overdetermined problems (2017)
[32] Cavallina, L.; Magnanini, R.; Sakaguchi, S., Two-phase heat conductors with a surface of the constant flow property (2018)
[33] Ishiwata, M.; Magnanini, R.; Wadade, H., A natural approach to the asymptotic mean value property for the p-Laplacian, Calc Var Part Differ Equ, 56, 4, 22 pp (2017) · Zbl 1378.35147
[34] Berti, D.; Magnanini, R., Short-time behaviour for game-theoretic p-caloric functions, J Math Pures Appl (2017)
[35] Alexandrov, Ad, Uniqueness theorems for surfaces in the large V, Vestnik Leningrad Univ, 13, 19, 5-8 (1958)
[36] Ciraolo, G.; Magnanini, R.; Sakaguchi, S., Symmetry of minimizers with a level surface parallel to the boundary, J Eur Math Soc, 17, 2789-2804 (2015) · Zbl 1335.49059
[37] Abramowitz, M.; Stegun, Ia, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Nat Bureau Standards Appl Math Ser, 55 (1972) · Zbl 0543.33001
[38] Sato, M-H, Comparison principle for singular degenerate elliptic equations on unbounded domains, Proc Jpn Acad Ser A Math Sci, 66, 252-256 (1990) · Zbl 0731.35003
[39] Lieb, E.; Loss, M., Analysis (2001), Providence (RI): American Mathematical Society, Providence (RI) · Zbl 0966.26002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.