×

The Matzoh Ball Soup Problem: a complete characterization. (English) Zbl 1332.35132

Summary: We characterize all the solutions of the heat equation that have their (spatial) equipotential surfaces which do not vary with the time. Such solutions are either isoparametric or split in space-time. The result gives a final answer to a problem raised by M. S. Klamkin, extended by G. Alessandrini, and that was named the Matzoh Ball Soup Problem by L. Zalcman. Similar results can also be drawn for a class of quasi-linear parabolic partial differential equations with coefficients which are homogeneous functions of the gradient variable. This class contains the (isotropic or anisotropic) evolution \(p\)-Laplace and normalized \(p\)-Laplace equations.

MSC:

35K05 Heat equation
35K15 Initial value problems for second-order parabolic equations

References:

[1] Alessandrini, G., Matzoh ball soup: a symmetry result for the heat equation, J. Anal. Math., 54, 229-236 (1990) · Zbl 0711.35054
[2] Alessandrini, G., Characterizing spheres by functional relations on solutions of elliptic and parabolic equations, Appl. Anal., 40, 251-261 (1991) · Zbl 0668.35033
[3] Ge, J. Q.; Ma, H., Anisotropic isoparametric hypersurfaces in Euclidean spaces, Ann. Global Anal. Geom., 41, 347-355 (2012) · Zbl 1243.53098
[4] He, Y. J.; Li, H. Z.; Ma, H.; Ge, J. Q., Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures, Indiana Univ. Math. J., 58, 853-868 (2009) · Zbl 1166.53035
[5] Klamkin, M. S., A physical characterization of a sphere, SIAM Rev., 6, 61 (1964), (Problem \(64-5^\ast )\) also in Problems in Applied Mathematics. Selection from SIAM Review. Edited by M.S. Klamkin. SIAM, Philadelphia, PA. 1990
[6] Ladyzenskaya, O. A.; Uraltseva, N. N., Linear and Quasilinear Elliptic Equations (1968), Academic Press: Academic Press New York · Zbl 0164.13002
[7] Levi-Civita, T., Famiglie di superficie isoparametriche nell’ordinario spazio euclideo, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., 26, 355-362 (1937) · JFM 63.1223.01
[8] Magnanini, R.; Peralta-Salas, D.; Sakaguchi, S., Stationary isothermic surfaces in Euclidean 3-space, Math. Ann. (2015), Published online, April 10th, 2015 · Zbl 1342.35131
[9] Magnanini, R.; Prajapat, J.; Sakaguchi, S., Stationary isothermic surfaces and uniformly dense domains, Trans. Amer. Math. Soc., 385, 4821-4841 (2006) · Zbl 1129.35005
[10] Magnanini, R.; Sakaguchi, S., Matzoh ball soup: heat conductors with a stationary isothermic surface, Ann. of Math., 156, 931-946 (2002) · Zbl 1011.35066
[11] Magnanini, R.; Sakaguchi, S., Interaction between degenerate diffusion and shape of domain, Proc. Roy. Soc. Edinburgh Sect. A, 137, 373-388 (2007) · Zbl 1120.35057
[12] Magnanini, R.; Sakaguchi, S., Stationary isothermic surfaces for unbounded domains, Indiana Univ. Math. J., 56, 6, 2723-2738 (2007) · Zbl 1140.35460
[13] Magnanini, R.; Sakaguchi, S., Nonlinear diffusion with a bounded stationary level surface, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 937-952 (2010) · Zbl 1194.35209
[14] Magnanini, R.; Sakaguchi, S., Stationary isothermic surfaces and some characterizations of the hyperplane in \(N\)-dimensional space, J. Differential Equations, 248, 1112-1119 (2010) · Zbl 1213.35326
[15] Magnanini, R.; Sakaguchi, S., Interaction between nonlinear diffusion and geometry of domain, J. Differential Equations, 252, 236-257 (2012) · Zbl 1243.35096
[16] Magnanini, R.; Sakaguchi, S., Matzoh ball soup revisited: the boundary regularity issue, Math. Methods Appl. Sci. (2012), published online · Zbl 1279.35062
[17] Sakaguchi, S., When are the spatial level surfaces of solutions of diffusion equations invariant with respect to the time variable?, J. Anal. Math., 78, 219-243 (1999) · Zbl 0939.35014
[18] Segre, B., Famiglie di ipersuperficie isoparametriche negli spazi euclidei ad un qualunque numero di dimensioni, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., 27, 203-207 (1938) · Zbl 0019.18403
[19] Zalcman, L., Some inverse problems of potential theory, Contemp. Math., 63, 337-350 (1987) · Zbl 0641.31003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.