×

An ALE particle method using upwind interpolation. (English) Zbl 1390.76321

Summary: In the present paper, an ALE particle method is presented for the numerical simulation of incompressible viscous flows. The present approach interpolates physical quantities, e.g., velocity and temperature, using an upwind scheme at an arbitrary new position. In the present approach, the incompressible Navier-Stokes equations are first solved in a Lagrangian step by a least squares moving particle semi-implicit (LSMPS) method. A redistribution of particle positions is then performed in order to deal with the distorted distribution of particles due to the Lagrangian movement. Finally, the particle velocity is interpolated at the particles’ new position, which is computed by two redistribution models. Taylor-Green vortices, lid-driven flows in a cavity and buoyancy-driven flows in a cavity for several Reynolds and Rayleigh numbers are computed as numerical examples. The results are compared with those of similar approaches proposed previously, such as non-upwind interpolation and the meshless advection using a flow-directional local-grid (MAFL) method. The method presented herein exhibits advantages such as higher accuracy and enhanced numerical stability.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

CMPGRD; DistMesh; LSQR; CRAIG
Full Text: DOI

References:

[1] Monaghan, J. J., Smoothed particle hydrodynamics, Annu Rev Astron Astrophys, 30, 543-574, (1992)
[2] Lucy, L., A numerical approach to the testing of the fission hypothesis, Astron J, 82, 1013-1024, (1977)
[3] Koshizuka, S.; Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl Sci Eng, 123, 421-434, (1996)
[4] Xu, R.; Stansby, P.; Laurence, D., Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, J Comput Phys, 228, 18, 6703-6725, (2009) · Zbl 1261.76047
[5] Guermond, J.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput Methods Appl Mech Eng, 195, 6011-6045, (2006) · Zbl 1122.76072
[6] Cummins, S. J.; Rudman, M., An SPH projection method, J Comput Phys, 152, 584-607, (1999) · Zbl 0954.76074
[7] Fang, J.; Parriaux, A., A regularized Lagrangian finite point method for the simulation of incompressible viscous flows, J Comput Phys, 227, 8894-8908, (2008) · Zbl 1165.76041
[8] Tanaka, M.; Masunaga, T., Stabilization and smoothing of pressure in mps method by quasi-compressibility, J Comput Phys, 229, 4279-4290, (2010) · Zbl 1334.76121
[9] Tamai, T.; Koshizuka, S., Least squares moving particle semi-implicit method, Comput Particle Mech, 1, 441, (2014)
[10] Chesshire, G.; Henshaw, W., Composite overlapping meshes for the solution of partial differential equations, J Comput Phys, 90, 1-64, (1990) · Zbl 0709.65090
[11] Tang, H.; Jones, S. C.; Sotiropoulos, F., An overset-grid method for 3d unsteady incompressible flows, J Comput Phys, 191, 567-600, (2003) · Zbl 1134.76435
[12] Hirt, C.; Amsden, A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J Comput Phys, 14, 227-253, (1974) · Zbl 0292.76018
[13] Braess, H.; Wriggers, P., Arbitrary Lagrangian Eulerian finite element analysis of free surface flow, Comput Methods Appl Mech Eng, 190, 95-109, (2000) · Zbl 0967.76053
[14] Braess, H.; Wriggers, P., Direct numerical simulations of fluidsolid systems using the arbitrary Lagrangianeulerian technique, J Comput Phys, 169, 427-462, (2001) · Zbl 1047.76571
[15] Norris, S.; Were, C.; Richards, P.; Mallinson, G., A Voronoi-based ale solver for the calculation of incompressible flow on deforming unstructured meshes, Int J Numer Methods Fluids, 65, 1160-1179, (2011) · Zbl 1429.76083
[16] Chew, C.; Yeo, K.; Shu, C., A generalized finite-difference (gfd) ale scheme for incompressible flows around moving solid bodies on hybrid Meshfreecartesian grids, J Comput Phys, 218, 510-548, (2006) · Zbl 1161.76525
[17] Brooks, A. N.; Hughes, T. J., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 1-3, 199-259, (1982) · Zbl 0497.76041
[18] Kuhl, E.; Hulshoff, S.; de Borst, R., An arbitrary Lagrangian Eulerian finite-element approach for fluidstructure interaction phenomena, Int J Numer Methods Eng, 57, 117-142, (2003) · Zbl 1062.74617
[19] Tezduyar, T. E., Computation of moving boundaries and interfaces and stabilization parameters, Int J Numer Methods Eng, 43, 555-575, (2003) · Zbl 1032.76605
[20] Inutsuka, S., Godunov-type sph, Memorie della Societ Astronomia Italiana, 65, 1027-1031, (1994)
[21] Vila, J., On particle weighted methods and smooth particle hydrodynamics, Math Models Methods Appl Sci, 09, 02, 161-209, (1999) · Zbl 0938.76090
[22] Deolmi, G.; Marcuzzi, F.; Cecchi, M. M., The best-approximation weighted-residuals method for the steady convection-diffusion-reaction problem, Math Comput Simul, 82, 1, 144-162, (2011) · Zbl 1246.65216
[23] Avesani, D.; Dumbser, M.; Bellin, A., A new class of moving-least-squares wenosph schemes, J Comput Phys, 270, 278-299, (2014) · Zbl 1349.76661
[24] Nestor, R.; Basa, M.; Quinlan, N., Moving boundary problems in the finite volume particle method, 3rd ERCOFTAC SPHERIC workshop on SPH applications, Lausanne, Switzerland, 4-6, (2008)
[25] Fatehi, R.; Manzari, M. T., A consistent and fast weakly compressible smoothed particle hydrodynamics with a new wall boundary condition, Int J Numer Methods Fluids, 68, 905-921, (2012) · Zbl 1237.76136
[26] Lind, S.; Xu, R.; Stansby, P.; Rogers, B., Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, J Comput Phys, 231, 1499-1523, (2012) · Zbl 1286.76118
[27] Skillen, A.; Lind, S.; Rogers, B. D.; Stansby, P. K., A diffusion based shifting algorithm for incompressible smoothed particle hydrodynamics: validation with cases involving slamming bodies and cylinder exit, In: 7th international SPHERIC workshop; 29 May 2012-31 May 2012; Prato, Italy, 29-31, (2012)
[28] Yoon, H.; Koshizuka, S.; Oka, Y., A mesh-free numerical method for direct simulation of gas-liquid phase interface, Nucl Sci Eng, 133, 192-200, (1999)
[29] Yoon, H.; Koshizuka, S.; Oka, Y., A particlegridless hybrid method for incompressible flows, Int J Numer Methods Fluids, 30, 407-424, (1999) · Zbl 0948.76067
[30] Yoon, H.; Koshizuka, S.; Oka, Y., Direct calculation of bubble growth, departure, and rise in nucleate pool boiling, Int J Multiphase Flow, 27, 277-298, (2001) · Zbl 1137.76794
[31] Levin, D., The approximation power of moving least-squares, Math Comput Am Math Soc, 67, 1517-1531, (1998) · Zbl 0911.41016
[32] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput Mech, 10, 307-318, (1992) · Zbl 0764.65068
[33] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int J Numer Methods Eng, 37, 229-256, (1994) · Zbl 0796.73077
[34] Liu, W.; Jun, S.; Zhang, Y., Reproducing kernel particle methods, Int J Numer Methods Fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[35] Onate, E.; Idelsohn, S.; Zienkiewicz, O.; Taylor, R., A finite point method in computational mechanics. application to cnvective transport and fluid flow, Int J Numer Methods Eng, 39, 3839-3866, (1996) · Zbl 0884.76068
[36] Liu, W.; Li, S.; Belytschko, T., Moving least-square reproducing kernel methods (i) methodology and convergence, Comput Methods Appl Mech Engrg, 143, 113-154, (1997) · Zbl 0883.65088
[37] Timmermans, L. J.P.; Minev, P. D.; Vosse, F. D., An approximate projection scheme for incompressible flow using spectral elements, Int J Numer Methods Fluids, 22, 673-688, (1996) · Zbl 0865.76070
[38] Kondo, M.; Koshizuka, S., Improvement of stability in moving particle semi-implicit method, Int J Numer Methods Fluids, 65, 638-654, (2011) · Zbl 1428.76155
[39] Adami, S.; Hu, X.; Adams, N., A transport-velocity formulation for smoothed particle hydrodynamics, J Comput Phys, 241, 292-307, (2013) · Zbl 1349.76659
[40] Quinlan, N.; Nestor, R., Fast exact evaluation of particle interaction vectors in the finite volume particle method, Springer Berlin Heidelberg, 79, 219-234, (2011) · Zbl 1218.65094
[41] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., An improved sph method: towards higher order convergence, J Comput Phys, 225, 1472-1492, (2007) · Zbl 1118.76050
[42] Persson, P.; Strang, G., A simple mesh generator in Matlab, SIAM Rev, 46, 2, 329-345, (2004) · Zbl 1061.65134
[43] Khayyer, A.; Gotoh, H., A 3d higher order Laplacian model for enhancement and stabilization of pressure calculation in 3d mps-based simulations, Appl Ocean Res, 37, 120-126, (2012)
[44] Leonard, B., A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput Methods Appl Mech Eng, 19, 59-98, (1979) · Zbl 0423.76070
[45] Henshaw, W., A fourth-order accurate method for the incompressible Navier-Stokes equations on overlapping grids, J Comput Phys, 113, 13-25, (1994) · Zbl 0808.76059
[46] Paige, C.; Saunders, M., Lsqr: an algorithm for sparse linear equations and sparse least squares, ACM Trans Math Softw (TOMS), 8, 43-71, (1982) · Zbl 0478.65016
[47] Ghia, U.; Ghia, K.; Shin, C., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J Comput Phys, 48, 387-411, (1982) · Zbl 0511.76031
[48] de Vahl Davis, G., Natural convection of air in a square cavity: a bench mark numerical solution, Int J Numer Methods Fluids, 3, 249-264, (1983) · Zbl 0538.76075
[49] Wan, D. C.; Patnaik, B. S.V.; Wei, G. W., A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Numer Heat Transf Part B, 40, 199-228, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.