×

On the algebras \(U^{\pm}_q (A_N)\): from a constructive-computational viewpoint. (English) Zbl 07673974

Consider a field \(K\) of characteristic zero, an element \(q \in K\) such that \(q^8 \neq 1\) and a positive integer \(N\), the Drinfeld-Jimbo quantum group of type \(A_N\) is denoted by \(U_q(A_N)\). Denote by \(U^+_q(A_N)\) the \((+)\)-part and by \(U^-_q(A_N)\) the \((-)\)-part of the group.
Both \(U^+_q(A_N)\) and \(U^-_q(A_N)\) have a standard PBW \(K\)-basis. In this paper it is proved that for a suitable monomial ordering on their basis, \(U^+_q(A_N)\) and \(U^-_q(A_N)\) are solvable polynomial algebras.
This allows to deduce in a computational way, further properties of such algebras. Both algebras
are Noetherian domains;
have Gelfand-Kirillov dimension equal to \(\frac{N(N+1)}{2}\);
have the global homological dimension smaller than or equal to the Gelfand-Kirillov dimension;
are non-homogeneous 2-Koszul algebras;
are Auslander regular algebras satisfying the Cohen-Macaulay property;
their \(K_0\)-group is isomorphic to \((\mathbb{Z},+)\);
have the elimination property for one-sided ideals, as defined in [H. Li, Commun. Algebra 46, No. 8, 3520–3532 (2018; Zbl 1391.13054)].

Moreover there are properties related to modules:
given a nonzero left ideal of one of these algebras and the quotient \(Q\) of the same algebra modulo the ideal, the Gelfand-Kirillov dimension of \(Q\) is smaller than \(\frac{N(N+1)}{2}\);
for a finitely generated module \(M\) over the algebra, one can find with an algorithm both the projective dimension and a finite free resolution.

MSC:

16T20 Ring-theoretic aspects of quantum groups
16Z05 Computational aspects of associative rings (general theory)

Citations:

Zbl 1391.13054

Software:

Plural
Full Text: DOI

References:

[1] Berger, R.; Ginzburg, V., Higher symplectic reflection algebras and nonhomogeneous N-Koszul property, J. Alg, 1, 304, 577-601 (2006) · Zbl 1151.16026 · doi:10.1016/j.jalgebra.2006.03.011
[2] Drinfeld, V. G., Hopf algebras and the quantum Yang-Baxter equation, Doklady Akademii Nauk SSSR, 283, 5, 1060-1064 (1985) · Zbl 0588.17015
[3] Jimbo, M., A q-difference analogue of U(G) and the Yang-Baxter equation, Lett. Math. Phys, 10, 1, 63-69 (1985) · Zbl 0587.17004
[4] Krause, G. R.; Lenagan, T. H., Growth of Algebras and Gelfand-Kirillov Dimension (1991), Providence, RI: Graduate Studies in Mathematics, American Mathematical Society, Providence, RI
[5] Kandri-Rody, Q.; Weispfenning, V., Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Comput., 9, 1-26 (1990) · Zbl 0715.16010 · doi:10.1016/S0747-7171(08)80003-X
[6] Levasseur, T., Some properties of noncommutative regular graded rings, Glasgow Math. J., 34, 277-300 (1992) · Zbl 0824.16032 · doi:10.1017/S0017089500008843
[7] Li, H., Noncommutative Gröbner Bases and Filtered-graded Transfer, 1795 (2002), Berlin, Heidelberg: Springer-Verlag, Berlin, Heidelberg · Zbl 1050.16022
[8] Li, H.; Li, F.; Dong, C., Recent Developments in Algebra and Related Areas, 8, Γ-leading homogeneous algebras and Gröbner bases, 155-200 (2009), Boston-Beijing: International Press & Higher Education Press · Zbl 1238.16033
[9] Li, H., Gröbner Bases in Ring Theory (2011), Hackensack, NJ: World Scientific Publishing Co., Inc, Hackensack, NJ · doi:10.1142/8223
[10] Li, H., A note on solvable polynomial algebras, Comput. Sci. J. Moldova, 22, 64, 99-109 (2014) · Zbl 1320.68227
[11] Li, H., An elimination lemma for algebras with PBW bases, Commun. Algebra, 46, 8, 3520-3532 (2018) · Zbl 1391.13054 · doi:10.1080/00927872.2018.1424863
[12] Li, H., Noncommutative Polynomial Algebras of Solvable Type and Their Modules: Basic Constructive-Computational Theory and Methods (2021), Boca Raton, London, New York: Chapman and Hall/CRC Press, Boca Raton, London, New York
[13] Li, H.; Van Oystaeyen, F., Zariskian Filtrations, 2 (1996), Berlin, Heidelberg: Kluwer Academic Publishers, Springer-Verlag, Berlin, Heidelberg · Zbl 0862.16027
[14] Levandovskyy, V.; Schönemann, H., Proc. Symbolic and Algebraic Computation, Plural: a computer algebra system for noncommutative polynomial algebras (2003), International Symposium ISSAC 2003: International Symposium ISSAC 2003, Philadelphia, USA
[15] Mora, T., An introduction to commutative and noncommutative Gröbner bases, Theoret. Comput. Sci, 134, 131-173 (1994) · Zbl 0824.68056 · doi:10.1016/0304-3975(94)90283-6
[16] Positselski, L., Nonhomogeneous quadratic duality and curvature, Funct. Anal. Appl., 3, 27, 197-204 (1993) · Zbl 0826.16041
[17] Rosso, M., Finite dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys, 117, 581-593 (1988) · Zbl 0651.17008 · doi:10.1007/BF01218386
[18] Yamane, I., A Poincare-Birkhoff-Witt theorem for quantized universal enveloping algebras of type A_N, Publ. RIMS. Kyoto Univ, 25, 3, 503-520 (1989) · Zbl 0694.17007 · doi:10.2977/prims/1195173355
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.