×

Generalized cohomological field theories in the higher order formalism. (English) Zbl 1511.18026

Using ideas coming from the BCOV theory [M. Bershadsky et al., Commun. Math. Phys. 165, No. 2, 311–427 (1994; Zbl 0815.53082)], S. Barannikov and M. Kontsevich [Int. Math. Res. Not. 1998, No. 4, 201–215 (1998; Zbl 0914.58004)] gave a method to construct, out of a differential graded Batalin-Vilkovsky (dg BV) algebra abiding by certain conditions, a formal Dubrovin-Frobenius manifold. They applied it in the case of the dg BV algebra of polyvector fields on a Calabi-Yau manifold \(X\), in which case their results produce a structure of a formal Dubrovin-Frobenius manifold on the Dolbeault cohomology of \(X\). There is a mirror partner of the latter result for the de Rham cohomology of a symplectic manifold abiding by the hard Lefschetz theorem [S. A. Merkulov, Int. Math. Res. Not. 1998, No. 14, 727–733 (1998; Zbl 0931.58002)]. In principle, one can drop some pieces of structure of a Dubrovin-Frobenius manifold, like the inner product and the unit, where the underlying algebraic statement follows from the explicit description of the homotopy quotient of the operad BV by the Batalin-Vilkovsky operator \(\Delta\), established by G. C. Drummond-Cole and B. Vallette [Sel. Math., New Ser. 19, No. 1, 1–47 (2013; Zbl 1264.18010)]. Miraculously, the homotopy quotient of BV by \(\Delta\) is to be represented by a non-differential operad, meaning that an unexpected formality theorem holds. The operad in question is the operad of hypercommutative algebras HyperCom.
Algebraically, a BV algebra may be defined as a commutative algebra rigged out in a unary operation \(\Delta\) of homological degree one which squares to zero and is a differential operator of order at most two with respect to the commutative product. About two decades ago Losev asked what would change in the result of homotopical trivialization if one considers as an input an analog of a BV algebra, where the BV operator is a differential operator of an arbitrary finite order, not necessarily of order two. In the past decade or so, a number of results emerged that strongly suggest that the case of an operator of order different from two may be both tractable and interesting. Most of these results are related to the Givental group action on the space of hypercommutative algebra structure on a given vector space \(V\), or, more generally, the space \[ \mathrm{Hom}\left( \mathrm{HyperCom},\mathcal{O}\right) \] for an arbitrary target operad \(\mathcal{O}\).
This paper shows that one may be able to use the Givental group action to compute the homotopy quotient by an operator \(\Delta\) by higher order, answering the question of Losev. Methods of this paper are entirely algebraic, being an elementary algebraic approach to computations with psi-classes and Givental symmetries, which completely bypasses the intersection theory on moduli spaces of curves. The geometry behind the generalized cohomological field theories and the higher order formalism is a topic of the authors’ ongoing project in a separate paper.

MSC:

18M75 Topological and simplicial operads
55P48 Loop space machines and operads in algebraic topology
81T45 Topological field theories in quantum mechanics

Software:

operads

References:

[1] Akman, F., On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra, 120, 2, 105-141 (1997) · Zbl 0885.17020
[2] Arnold, V.I.: Symplectization, complexification and mathematical trinities. The Arnoldfest (Toronto, ON, 1997). Vol. 24. Fields Inst. Commun. Amer. Math. Soc., Providence, pp. 23-37 (1999) · Zbl 0948.01012
[3] Arnold, V.I.: Mysterious mathematical trinities. Surveys in modern mathematics, vol. 321. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, pp. 1-12 (2005) · Zbl 1125.00300
[4] Barannikov, S.; Kontsevich, M., Frobenius manifolds and formality of Lie algebras of polyvector fields, Int. Math. Res. Notices, 4, 201-215 (1998) · Zbl 0914.58004
[5] Bashkirov, D., Markl, M.: Calculus of multilinear differential operators, operator \(L_{\infty }\) -algebras and \(IBL_{\infty }\)-algebras. J. Geom. Phys. 173, 40, Paper No. 104431 (2022) · Zbl 1491.18023
[6] Batalin, IA; Bering, K.; Damgaard, PH, Gauge independence of the Lagrangian path integral in a higher-order formalism, Phys. Lett. B, 389, 4, 673-676 (1996)
[7] Batalin, IA; Bering, K., Gauge independence in a higher-order Lagrangian formalism via change of variables in the path integral, Phys. Lett. B, 742, 23-28 (2015) · Zbl 1345.81075
[8] Bergeron, F., Labelle, G., Leroux, P.: Combinatorial species and tree-like structures, vol. 67. Encyclopedia of Mathematics and its Applications. Translated from the 1994 French original by Margaret Readdy, With a foreword by Gian-Carlo Rota. Cambridge University Press, Cambridge, pp. xx+457 (1998)
[9] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys., 165, 2, 311-427 (1994) · Zbl 0815.53082
[10] Borjeson, K.: \(A_{\infty }\)-algebras derived from associative algebras with a non-derivation differential. J. Gen. Lie Theory Appl. 9(1), 5, Art. ID 1000214 (2015) · Zbl 1357.16022
[11] Bremner, M.R., Dotsenko, V.: Algebraic Operads. An Algorithmic Companion, pp. xvii+365. CRC Press, Boca Raton (2016) · Zbl 1350.18001
[12] Chapoton, F.: Les trinités remarquables. (2021). http://irma.math.unistra.fr/chapoton/trinites.html (visited on 09/07/2021)
[13] Chekeres, O., Losev, A.S., Mnev, P., Youmans, D.R.: Theory of holomorphic maps of two-dimensional complex manifolds to toric manifolds and type A multi-string theory. (2021). arXiv: 2111.06836 · Zbl 1513.81118
[14] Dechant, P-P, From the trinity (A3, B3, H3) to an ADE correspondence, Proc. A., 474, 2220, 20180034, 19 (2018) · Zbl 1425.92225
[15] Dotsenko, V., Word operads and admissible orderings, Appl. Categ. Struct., 28, 4, 595-600 (2020) · Zbl 1442.18045
[16] Dotsenko, V.; Griffin, J., Cacti and filtered distributive laws, Algebr. Geom. Topol., 14, 6, 3185-3225 (2014) · Zbl 1305.18033
[17] Dotsenko, V.; Khoroshkin, A., Gröbner bases for operads, Duke Math. J., 153, 2, 363-396 (2010) · Zbl 1208.18007
[18] Dotsenko, V.; Khoroshkin, A., Quillen homology for operads via Gröbner bases, Doc. Math., 18, 707-747 (2013) · Zbl 1278.18018
[19] Dotsenko, V.; Khoroshkin, A., Shuffle algebras, homology, and consecutive pattern avoidance, Algebra Number Theory, 7, 3, 673-700 (2013) · Zbl 1271.05101
[20] Dotsenko, V.; Shadrin, S.; Vallette, B., Givental group action on topological field theories and homotopy Batalin-Vilkovisky algebras, Adv. Math., 236, 224-256 (2013) · Zbl 1294.14019
[21] Dotsenko, V.; Shadrin, S.; Vallette, B., De Rham cohomology and homotopy Frobenius manifolds, J. Eur. Math. Soc. (JEMS), 17, 3, 535-547 (2015) · Zbl 1317.58003
[22] Dotsenko, V.; Shadrin, S.; Vallette, B., Givental action and trivialisation of circle action, J. Éc. Polytech. Math., 2, 213-246 (2015) · Zbl 1331.18010
[23] Dotsenko, V.; Shadrin, S.; Vallette, B., Pre-Lie deformation theory, Mosc. Math. J., 16, 3, 505-543 (2016) · Zbl 1386.18054
[24] Dotsenko, V., Shadrin, S., Vallette, B.: The twisting procedure. (2018). arXiv:1810.02941
[25] Dotsenko, V.; Shadrin, S.; Vallette, B., Toric varieties of Loday’s associahedra and noncommutative cohomological field theories, J. Topol., 12, 2, 463-535 (2019) · Zbl 1421.18002
[26] Dotsenko, V., Vejdemo-Johansson, M.: Implementing Gröbner bases for operads. In: OPERADS 2009, vol. 26. Sémin, pp. 77-98. Congr. Soc. Math. France, Paris (2013) · Zbl 1277.68301
[27] Drummond-Cole, GC; Vallette, B., The minimal model for the Batalin-Vilkovisky operad, Selecta Math. (N.S.), 19, 1, 1-47 (2013) · Zbl 1264.18010
[28] Dunin-Barkowski, P.; Shadrin, S.; Spitz, L., Givental graphs and inversion symmetry, Lett. Math. Phys., 103, 5, 533-557 (2013) · Zbl 1277.53095
[29] Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. Special Volume, Part II. GAFA 2000 (Tel Aviv, 1999), pp. 560-673 (2000) · Zbl 0989.81114
[30] Escobar, L.: Bott-Samelson varieties, subword complexes and brick polytopes. In: 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014). Discrete Math. Theor. Comput. Sci. Proc., AT. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, pp. 863-874 (2014) · Zbl 1394.14029
[31] Gálvez-Carrillo, I.; Tonks, A.; Vallette, B., Homotopy Batalin-Vilkovisky algebras, J. Noncommun. Geom., 6, 3, 539-602 (2012) · Zbl 1258.18005
[32] Getzler, E., Batalin-Vilkovisky algebras and two-dimensional topological field theories, Commun. Math. Phys., 159, 2, 265-285 (1994) · Zbl 0807.17026
[33] Getzler, E., Two-dimensional topological gravity and equivariant cohomology, Commun. Math. Phys., 163, 3, 473-489 (1994) · Zbl 0806.53073
[34] Getzler, E.: Operads and moduli spaces of genus 0 Riemann surfaces. The moduli space of curves (Texel Island, 1994), vol. 129, pp. 199-230. Progr. Math. Birkhäuser Boston, Boston (1995) · Zbl 0851.18005
[35] Ginzburg, V.; Kapranov, M., Koszul duality for operads, Duke Math. J., 76, 1, 203-272 (1994) · Zbl 0855.18006
[36] Ginzburg, V.; Schedler, T., Differential operators and BV structures in noncommutative geometry, Selecta Math. (N.S.), 16, 4, 673-730 (2010) · Zbl 1268.18005
[37] Hoffbeck, E., A Poincaré-Birkhoff-Witt criterion for Koszul operads, Manuscr. Math., 131, 1-2, 87-110 (2010) · Zbl 1207.18009
[38] Joyal, A., Une théorie combinatoire des séries formelles, Adv. Math., 42, 1, 1-82 (1981) · Zbl 0491.05007
[39] Khoroshkin, A.; Markarian, N.; Shadrin, S., Hypercommutative operad as a homotopy quotient of BV, Commun. Math. Phys., 322, 3, 697-729 (2013) · Zbl 1281.55011
[40] Khoroshkin, A., PBW property for associative universal enveloping algebras over an operad, Int. Math. Res. Not. IMRN, 4, 3106-3143 (2022) · Zbl 1483.18025
[41] Kontsevich, M.; Manin, Yu, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Commun. Math. Phys., 164, 3, 525-562 (1994) · Zbl 0853.14020
[42] Koszul, J.-L.: Crochet de Schouten-Nijenhuis et cohomologie. Numéro Hors Série. The mathematical heritage of Élie Cartan (Lyon, 1984), pp. 257-271 (1985) · Zbl 0615.58029
[43] Kravchenko, O.: Deformations of Batalin-Vilkovisky algebras. Poisson geometry (Warsaw, 1998). Vol. 51. Banach Center Publ. Polish Acad. Sci. Inst. Math., Warsaw, pp. 131-139 (2000) · Zbl 1015.17029
[44] Laubie, P.: The Losev-Manin twisted associative algebra. Internship report, University of Strasbourg (2021)
[45] Le Bruyn, L.: Arnold’s trinities. (2008). http://www.neverendingbooks.org/arnolds-trinities (visited on 09/07/2021)
[46] Le Bryun, L.: Arnold’s trinities version 2.0. (2008). http://www.neverendingbooks.org/arnolds-trinities-version-20 (visited on 09/07/2021)
[47] Loday, J.-L., Vallette, B.: Algebraic operads, vol. 346. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], pp. xxiv+634. Springer, Heidelberg (2012) · Zbl 1260.18001
[48] Losev, A., Manin, Y.: New moduli spaces of pointed curves and pencils of flat connections, vol. 48. Dedicated to William Fulton on the occasion of his 60th birthday, pp. 443-472 (2000) · Zbl 1078.14536
[49] Losev, A.; Nekrasov, N.; Shatashvili, S., Issues in topological gauge theory, Nuclear Phys. B, 534, 3, 549-611 (1998) · Zbl 0954.57013
[50] Losev, A.; Polyubin, I., Commutativity equations and dressing transformations, JETP Lett., 77, 53-57 (2003)
[51] Losev, A.; Shadrin, S., From Zwiebach invariants to Getzler relation, Commun. Math. Phys., 271, 3, 649-679 (2007) · Zbl 1126.53057
[52] Losev, A.; Shadrin, S.; Shneiberg, I., Tautological relations in Hodge field theory, Nuclear Phys. B, 786, 3, 267-296 (2007) · Zbl 1225.53077
[53] Losev, A.; Moore, G.; Nekrasov, N.; Shatashvili, S., Four-dimensional avatars of two-dimensional RCFT, Nuclear Phys. B Proc. Suppl., 46, 130-145 (1996) · Zbl 0957.81710
[54] Lysov, V., Anticommutativity equation in topological quantum mechanics, JETP Lett., 76, 724-727 (2002)
[55] Markl, M.: Higher braces via formal (non)commutative geometry. Geometric methods in physics. Trends Math, pp. 67-81. Birkhäuser/Springer, Cham (2015) · Zbl 1329.13031
[56] Markl, M., On the origin of higher braces and higher-order derivations, J. Homotopy Relat. Struct., 10, 3, 637-667 (2015) · Zbl 1330.13032
[57] Markl, M.: Permutads via operadic categories, and the hidden associahedron. J. Combin. Theory Ser. A 175, 105277, 40 (2020) · Zbl 1479.18017
[58] Méndez, MA, Koszul duality for monoids and the operad of enriched rooted trees, Adv. Appl. Math., 44, 3, 261-297 (2010) · Zbl 1230.05295
[59] Merkulov, SA, Formality of canonical symplectic complexes and Frobenius manifolds, Int. Math. Res. Notices, 14, 727-733 (1998) · Zbl 0931.58002
[60] Positsel’skiĭ, L.E.: Nonhomogeneous quadratic duality and curvature. Funktsional. Anal. i Prilozhen. 27(3) , 57.66, 96 (1993) · Zbl 0826.16041
[61] Priddy, SB, Koszul resolutions, Trans. Am. Math. Soc., 152, 39-60 (1970) · Zbl 0261.18016
[62] Procesi, C., The Toric Variety Associated to Weyl Chambers, 153-161 (1990), Paris: Mots. Lang. Raison. Calc. Hermès, Paris · Zbl 1177.14090
[63] Shadrin, S.: BCOV theory via Givental group action on cohomological fields theories. Mosc. Math. J. 9(2), 411-429 (2009), back matter · Zbl 1184.14070
[64] Shadrin, S.; Zvonkine, D., A group action on Losev-Manin cohomological field theories, Ann. Inst. Fourier (Grenoble), 61, 7, 2719-2743 (2011) · Zbl 1275.53085
[65] Soukhanov, L.: An operad from the secondary polytope (2015). arXiv:1505.08157
[66] Tamaroff, P., The cohomology of coalgebras in species, Commun. Algebra, 50, 7, 2811-2830 (2022) · Zbl 1517.16003
[67] Vallette, B., Homotopy theory of homotopy algebras, Ann. Inst. Fourier (Grenoble), 70, 2, 683-738 (2020) · Zbl 1508.18019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.