×

Convergence and optimality of higher-order adaptive finite element methods for eigenvalue clusters. (English) Zbl 1346.65058

Summary: Proofs of convergence of adaptive finite element methods (AFEMs) for approximating eigenvalues and eigenfunctions of linear elliptic problems have been given in several recent papers. A key step in establishing such results for multiple and clustered eigenvalues was provided by X. Dai et al. [IMA J. Numer. Anal. 35, No. 4, 1934–1977 (2015; Zbl 1332.65159)], who proved convergence and optimality of AFEMs for eigenvalues of multiplicity greater than one. There it was shown that a theoretical (noncomputable) error estimator for which standard convergence proofs apply is equivalent to a standard computable estimator on sufficiently fine grids. In [Numer. Math. 130, No. 3, 467–496 (2015; Zbl 1326.65155)], D. Gallistl used a similar tool to prove that a standard AFEM for controlling eigenvalue clusters for the Laplacian using continuous piecewise linear finite element spaces converges with optimal rate. When considering either higher-order finite element spaces or nonconstant diffusion coefficients, however, the arguments of Dai et al. [loc. cit.] and Gallistl [loc. cit.] do not yield equivalence of the practical and theoretical estimators for clustered eigenvalues. In this article we provide this missing key step, thus showing that standard adaptive FEMs for clustered eigenvalues employing elements of arbitrary polynomial degree converge with optimal rate. We additionally establish that a key user-defined input parameter in the AFEM, the bulk marking parameter, may be chosen entirely independently of the properties of the target eigenvalue cluster. All of these results assume a fineness condition on the initial mesh in order to ensure that the nonlinearity is sufficiently resolved.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs

Software:

deal.ii

References:

[1] I. Babuška and J. E. Osborn, {\it Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems}, Math. Comp., 52 (1989), pp. 275-297. · Zbl 0675.65108
[2] W. Bangerth, R. Hartmann, and G. Kanschat, {\it deal.II–a general-purpose object-oriented finite element library}, ACM Trans. Math. Software, 33 (2007), 24. · Zbl 1365.65248
[3] P. Binev, W. Dahmen, and R. DeVore, {\it Adaptive finite element methods with convergence rates}, Numer. Math., 97 (2004), pp. 219-268. · Zbl 1063.65120
[4] A. Bonito and R. H. Nochetto, {\it Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method}, SIAM J. Numer. Anal., 48 (2010), pp. 734-771, http://dx.doi.org/10.1137/08072838X doi:10.1137/08072838X. · Zbl 1254.65120
[5] C. Carstensen and J. Gedicke, {\it An oscillation-free adaptive FEM for symmetric eigenvalue problems}, Numer. Math., 118 (2011), pp. 401-427. · Zbl 1227.65106
[6] C. Carstensen, D. Peterseim, and M. Schedensack, {\it Comparison results of finite element methods for the Poisson model problem}, SIAM J. Numer. Anal., 50 (2012), pp. 2803-2823, http://dx.doi.org/10.1137/110845707 doi:10.1137/110845707. · Zbl 1261.65115
[7] J. M. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, {\it Quasi-optimal convergence rate for an adaptive finite element method}, SIAM J. Numer. Anal., 46 (2008), pp. 2524-2550, http://dx.doi.org/10.1137/07069047X doi:10.1137/07069047X. · Zbl 1176.65122
[8] X. Dai, L. He, and A. Zhou, {\it Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues}, IMA J. Numer. Anal., 35 (2015), pp. 1934-1977. · Zbl 1332.65159
[9] X. Dai, J. Xu, and A. Zhou, {\it Convergence and optimal complexity of adaptive finite element eigenvalue computations}, Numer. Math., 110 (2008), pp. 313-355. · Zbl 1159.65090
[10] W. Dörfler, {\it A convergent adaptive algorithm for Poisson’s equation}, SIAM J. Numer. Anal., 33 (1996), pp. 1106-1124, http://dx.doi.org/10.1137/0733054 doi:10.1137/0733054. · Zbl 0854.65090
[11] D. Gallistl, {\it An optimal adaptive FEM for eigenvalue clusters}, Numer. Math., 130 (2015), pp. 467-496. · Zbl 1326.65155
[12] E. M. Garau and P. Morin, {\it Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems}, IMA J. Numer. Anal., 31 (2011), pp. 914-946. · Zbl 1225.65107
[13] E. M. Garau, P. Morin, and C. Zuppa, {\it Convergence of adaptive finite element methods for eigenvalue problems}, Math. Models Methods Appl. Sci., 19 (2009), pp. 721-747. · Zbl 1184.65100
[14] S. Giani and I. G. Graham, {\it A convergent adaptive method for elliptic eigenvalue problems}, SIAM J. Numer. Anal., 47 (2009), pp. 1067-1091, http://dx.doi.org/10.1137/070697264 doi:10.1137/070697264. · Zbl 1191.65147
[15] T. Gudi, {\it A new error analysis for discontinuous finite element methods for linear elliptic problems}, Math. Comp., 79 (2010), pp. 2169-2189. · Zbl 1201.65198
[16] R. H. Nochetto and A. Veeser, {\it Primer of adaptive finite element methods}, in Multiscale and Adaptivity: Modeling, Numerics and Applications, Lecture Notes in Math. 2040, Springer, Heidelberg, 2012, pp. 125-225. · Zbl 1252.65192
[17] R. Stevenson, {\it Optimality of a standard adaptive finite element method}, Found. Comput. Math., 7 (2007), pp. 245-269. · Zbl 1136.65109
[18] R. Stevenson, {\it The completion of locally refined simplicial partitions created by bisection}, Math. Comp., 77 (2008), pp. 227-241. · Zbl 1131.65095
[19] A. Veeser, {\it Approximating gradients with continuous piecewise polynomial functions}, Found. Comput. Math., 16 (2016), pp. 723-750. · Zbl 1347.41043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.