×

Mathematical modeling of wide-range compressible two-phase flows. (English) Zbl 1442.76128

Summary: The paper considers flow modeling of two-phase heterogeneous medium. Each phase of the medium is considered as continuum, which is described by the compressible Euler equations. The phases are separated by the contact surface (interface) and are not mixed on the molecular level. Examples of such medium are: mixtures of solid particles and gas (in dense or dilute concentration of particles), liquids with small bubbles, solid porous materials filled with gas or liquid. The phase can be of connected structure (dense particles, porous solid, gas between dilute particles, etc.) or of non-connected structure (separated inclusions as gas bubbles, dilute particles, closed pores in solid, etc.). The connectivity of the phase is closely related to the propagation of acoustic perturbations. An attempt was made to consider all the cases of the phase connectivity in the framework of a unique approach. The paper presents an approach that couples the models designed for different cases of phase connectivity to the generalized hyperbolic and thermodynamically consistent form. The proposed model is applicable for simulating flows with change of the phase connectivity, e.g. dense-to-dilute two-phase flows. The model is verified on several problems of gas-solid granular medium flows. In numerical simulations the Godunov method with the HLLEM flux approximation on arbitrary moving Euler grids is used.

MSC:

76T25 Granular flows
76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)

Software:

HLLC
Full Text: DOI

References:

[1] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow., 12, 861-889 (1986) · Zbl 0609.76114
[2] V.P. Korobeinikov, Mathematical modeling of blast wave propagation in gas particle mixtures / V.P. Korobeinikov, V.V. Markov, I.S. Menshov // III International school on Exposibility of Industrial Dust, Turawa 5-7 Nov. 1982. Papers. /P. Wolanski (Ed.). - Turawa, 1982.; V.P. Korobeinikov, Mathematical modeling of blast wave propagation in gas particle mixtures / V.P. Korobeinikov, V.V. Markov, I.S. Menshov // III International school on Exposibility of Industrial Dust, Turawa 5-7 Nov. 1982. Papers. /P. Wolanski (Ed.). - Turawa, 1982.
[3] A.V. Fedorov, V.M. Fomin, T.A. Khmel, Wave processes in gas suspension of metal particles. - Novosibirsk: 2015 - 305 p.; A.V. Fedorov, V.M. Fomin, T.A. Khmel, Wave processes in gas suspension of metal particles. - Novosibirsk: 2015 - 305 p.
[4] Khomenko, Y. P.; Ischenko, A. N.; Kasimov, V. Z., Mathematical Modelling of Interior Ballistic Processes in Barrel Systems, 256 (1999), Novosibirsk: Publishing House of SB RAS
[5] Nigmatulin, R. I., Dynamics of Multiphase Media, Vol. I (1991), Hemisphere Publ. Corp.
[6] Trapp, J. A.; Mortensen, G. A., A discrete particle model for bubble-slug two-phase flows, J. Comput. Phys., 107, 367-377 (1993) · Zbl 0779.76065
[7] Deen, N. G.; van SintAnnaland, M.; Kuipers, J. A.M., Multi-scale modeling of dispersed gas – liquid two-phase flow, Chem. Eng. Sci., 59, 1853-1861 (2004)
[8] Marble, F. E., Combustion and Propulsion (5th AGARD Colloquium) Vol. 175 (1963), Pergamon Press
[9] Saurel, R.; Chinnayya, A.; Carmouze, Q., Modelling compressible dense and dilute two-phase flows, Phys. Fluids, 29, 063301 (2017)
[10] Ambroso, A.; Chalons, C.; Raviart, P.-A., A Godunov-type method for the seven-equation model of compressible two-phase flow, Comput. & Fluids, 54, 67-91 (2012) · Zbl 1291.76212
[11] Serezhkin, A. A.; Menshov, I. S.; Egorova, M. S.; Dyachkov, S. A.; Parshikov, A. N.; Zhakhovsky, V. V.; Rogozkin, D. B.; Kuratov, S. E., Shock-induced ejecta from a layer of spherical particles. Part II: modeling with the non-equilibrium two-phase model of a granular medium, IOP Conf. Ser.: J. Phys.: Conf. Ser., 815, 012030 (2017)
[12] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467 (1999) · Zbl 0937.76053
[13] Gavrilyuk, S. L.; Favrie, N.; Saurel, R., Modelling wave dynamics of compressible elastic materials, J. Comput. Phys., 227, 2941-2969 (2008) · Zbl 1155.74020
[14] Schwendeman, D. W.; Wahle, C. W.; Kapila, A. K., The Riemann problem and high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys., 212, 490-526 (2006) · Zbl 1161.76531
[15] Tokareva, S. A.; Toro, E. F., HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow, J. Comput. Phys., 229, 3573-3604 (2010) · Zbl 1391.76440
[16] Menshov, I.; Serezhkin, A., A generalized Rusanov method for the Baer-Nunziato equations with application to DDT processes in condensed porous explosives, Internat. J. Numer. Methods Fluids, 1-19 (2017)
[17] Murrone, A.; Guillard, H., A five equation model for compressible two phase flow problems, J. Comput. Phys., 202, 664-698 (2005) · Zbl 1061.76083
[18] Grove, J. W., Pressure-velocity equilibrium hydrodynamic models, Acta Math. Sci., 30B, 2, 563-594 (2010) · Zbl 1240.35397
[19] Hank, S.; Favrie, N.; Massoni, J., Modeling hyperelasticity in non-equilibrium multiphase flows, J. Comput. Phys., 330, 65-91 (2017) · Zbl 1378.74022
[20] Dumbser, M.; Balsara, D., A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304, 275-319 (2016) · Zbl 1349.76603
[21] I. Menshov, A. Serezhkin, Modeling non-equilibrium two-phase flow in elastic-plastic porous solids, in: Proceedings IACM-ECCOMAS 2014. Electronic book, 2014, pp. 1-12.; I. Menshov, A. Serezhkin, Modeling non-equilibrium two-phase flow in elastic-plastic porous solids, in: Proceedings IACM-ECCOMAS 2014. Electronic book, 2014, pp. 1-12.
[22] Tokareva, S. A.; Toro, E. F., A flux splitting method for the Baer-Nunziato equations of compressible two-phase flow, J. Comput. Phys., 323, 45-74 (2016) · Zbl 1415.76480
[23] Toro, E. F.; Vázquez-Cendón, M. E., Flux splitting schemes for the Euler equations, Comput. & Fluids, 70, 1-12 (2012) · Zbl 1365.76243
[24] Rochette, D., Contributions to numerical developments in shock waves attenuation in porous filters, Shock Waves, 17, 103-112 (2007) · Zbl 1195.76243
[25] Ling, Y.; Wagner, J. L.; Beresh, S. J.; Kearney, S. P.; Balachandar, S., Interaction of a planar shock wave with a dense particle curtain: Modeling and experiments, Phys. Fluids, 24, 113301 (2012)
[26] Britan, A.; Ben-Dor, G.; Igra, O.; Shapiro, H., Shock waves attenuation by granular filters, Int. J. Multiph. Flow., 27, 617-634 (2001) · Zbl 1137.76540
[27] Sen, Oishik; Gaul, Nicholas J.; Choi, K. K.; Jacobs, Gustaaf; Udaykumar, H. S., Evaluation of kriging based surrogate models constructed from mesoscale computations of shock interaction with particles, J. Comput. Phys., 336, 235-260 (2017)
[28] Chinnayya, A.; Daniel, E.; Saurel, R., Modelling detonation waves in heterogeneous energetic materials, J. Comput. Phys., 196, 2, 490-538 (2004) · Zbl 1109.76335
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.