×

A flux splitting method for the Baer-Nunziato equations of compressible two-phase flow. (English) Zbl 1415.76480

Summary: Here, we extend the Toro-Vázquez flux vector splitting approach (TV), originally proposed for the ideal 1D Euler equations in [E. F. Toro and M. E. Vázquez-Cendón, Comput. Fluids 70, 1–12 (2012; Zbl 1365.76243)], to the Baer-Nunziato equations of compressible two-phase flow. Following the TV approach, we identify corresponding advection and pressure operators. We perform a rigorous analysis of the associated non-conservative pressure system and derive its complete characteristic structure. The choice of the advection numerical flux is obvious. For the pressure system, several schemes are presented. The complete schemes are then implemented in the setting of finite volume and path-conservative methods and are systematically assessed in terms of accuracy and efficiency, through a carefully selected suite of test problems. The presented schemes constitute a building block for the construction of high-order numerical methods for solving the Baer-Nunziato equations. Here, as an illustrative example of such possibility, we present the construction of a second-order scheme.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76T15 Dusty-gas two-phase flows
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1365.76243

Software:

AUSM; PVM; HLLC
Full Text: DOI

References:

[1] Toro, E. F.; Vázquez-Cendón, M. E., Flux splitting schemes for the Euler equations, Comput. Fluids, 70, 1-12 (2012) · Zbl 1365.76243
[2] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, J. Multiph. Flow, 12, 861-889 (1986) · Zbl 0609.76114
[3] Embid, P.; Baer, M., Mathematical analysis of a two-phase continuum mixture theory, Contin. Mech. Thermodyn., 4, 279-312 (1992) · Zbl 0760.76096
[4] Tokareva, S. A.; Toro, E. F., HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow, J. Comput. Phys., 229, 3573-3604 (2010) · Zbl 1391.76440
[5] Toro, E. F., Riemann-problem based techniques for computing reactive two-phase flows, Lect. Notes Phys., 351, 472-481 (1989)
[6] Toumi, I., An upwind numerical method for two-fluid two-phase flow models, Nucl. Sci. Eng., 123, 147-168 (1996)
[7] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 1115-1145 (1999) · Zbl 0957.76057
[8] Pailliere, H.; Kumbaro, A.; Bestion, D.; Mimouni, S.; Laporta, A.; Staedtke, H.; Franchello, G.; Graf, U.; Romstedt, P.; Toro, E. F.; Romenski, E.; Deconinck, H.; Valero, E.; de Cachard, F.; Smith, B., Advanced three-dimensional two-phase flow simulation tools for application to reactor safety (ASTAR), Nucl. Eng. Des., 235, 379-400 (2005)
[9] Chang, C. H.; Liou, M. S., A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM+ up scheme, J. Comput. Phys., 225, 840-873 (2007) · Zbl 1192.76030
[10] Saurel, R.; Métayer, O. L.; Massoni, J.; Gavrilyuk, S., Shock jump relations for multiphase mixtures with stiff mechanical relaxation, Shock Waves, 16, 209-232 (2007) · Zbl 1195.76245
[11] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E., FORCE schemes on unstructured meshes II: nonconservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 199, 625-647 (2010) · Zbl 1227.76043
[12] Crouzet, F.; Daude, F.; Galon, P.; Helluy, P.; Hérard, J.-M.; Hurisse, O.; Liu, Y., Approximate solutions of the Baer-Nunziato model, ESAIM Proc., 40, 63-82 (2013) · Zbl 06509998
[13] Coquel, F.; Hérard, J.-M.; Saleh, K., A splitting method for the isentropic Baer-Nunziato two-phase flow model, ESAIM Proc., 38, 241-256 (2013) · Zbl 1329.76253
[14] Coquel, F.; Hérard, J.-M.; Saleh, K.; Seguin, N., A robust entropy-satisfying finite volume scheme the isentropic Baer-Nunziato model, Math. Model. Numer. Anal., 48, 165-206 (2014) · Zbl 1286.76098
[15] Dumbser, M.; Balsara, D. S., A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304, 275-319 (2016) · Zbl 1349.76603
[16] Daude, F.; Galon, P., On the computation of the Baer-Nunziato model using ALE formulation with HLL- and HLLC-type solvers towards fluid-structure interactions, J. Comput. Phys., 304, 189-230 (2016) · Zbl 1349.76320
[17] Godunov, S. K., A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47, 357-393 (1959)
[18] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer-Verlag · Zbl 1227.76006
[19] Steger, J. L.; Warming, R. F., Flux vector splitting of the inviscid gasdynamic equations with applications to finite difference methods, J. Comput. Phys., 40, 263-293 (1981) · Zbl 0468.76066
[20] B. van Leer, Flux-vector splitting for the Euler equations, Technical report ICASE 82-30, NASA Langley Research, Center, USA.; B. van Leer, Flux-vector splitting for the Euler equations, Technical report ICASE 82-30, NASA Langley Research, Center, USA. · Zbl 0555.76014
[21] Zha, G.-C.; Bilgen, E., Numerical solution of Euler equations by a new flux vector splitting scheme, Int. J. Numer. Methods Fluids, 17, 115-144 (1993) · Zbl 0779.76067
[22] Liou, M. S.; Steffen, C. J., A new flux splitting scheme, J. Comput. Phys., 107, 23-39 (1993) · Zbl 0779.76056
[23] Liou, M. S., A sequel to AUSM: AUSM+, J. Comput. Phys., 129, 364-382 (1996) · Zbl 0870.76049
[24] Liou, M. S., A sequel to AUSM, part II: AUSM+-up for all speeds, J. Comput. Phys., 214, 137-170 (2006) · Zbl 1137.76344
[25] Paillere, H.; Corre, C.; Garcia-Cascales, J. R., On the extension of the AUSM+ scheme to compressible two-fluid models, Comput. Fluids, 32, 891-916 (2003) · Zbl 1040.76044
[26] Toro, E. F.; Castro, C. E.; Lee, B. J., A novel numerical flux for the 3D Euler equations with general equation of state, J. Comput. Phys., 303, 80-94 (2015) · Zbl 1349.76398
[27] Balsara, D. S.; Montecinos, G. I.; Toro, E. F., Exploring various flux vector splittings for the magnetohydrodynamic system, J. Comput. Phys., 311, 1-21 (2016) · Zbl 1349.76885
[28] Schwendeman, D. W.; Wahle, C. W.; Kapila, A. K., The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys., 212, 490-526 (2006) · Zbl 1161.76531
[29] Coquel, F.; Hérard, J.-M.; Saleh, K.; Seguin, N., A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model (2016)
[30] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125, 150-160 (1996) · Zbl 0847.76060
[31] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[32] Castro, C. E.; Toro, E. F., Roe-type Riemann solvers for general hyperbolic systems, Int. J. Numer. Methods Fluids, 75, 467-486 (2014) · Zbl 1455.65144
[33] Dumbser, M.; Toro, E. F., A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 70-88 (2011) · Zbl 1220.65110
[34] Castro Díaz, M. J.; Fernández-Nieto, E. D., A class of computationally fast first order finite volume solvers: PVM methods, SIAM J. Sci. Comput., 34, A2173-A2196 (2012) · Zbl 1253.65167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.