×

Hochschild Lefschetz class for \(\mathcal D\)-modules. (English) Zbl 1278.53091

Let \(M\) be a complex manifold, \(\mathcal D_M\) the sheaf of holomorphic differential operators on \(M\), \(D^b(\mathcal D_M)\) the bounded derived category of \(\mathcal D_M\)-modules and \(D^b_{\mathrm{coh}}(\mathcal D_M)\) the full triangulated subcategory of \(D^b(\mathcal D_M)\) containing objects with coherent cohomologies. For a holomorphic diffeomorphism \(\gamma\) on \(M\) and a \(\mathcal D_M\)-module \(\mathcal{M}\), there is a natural functor \(\gamma_\ast: D^b_{\mathrm{coh}}(\mathcal D_M)\longrightarrow D^b_{\mathrm{coh}}(\mathcal D_M)\). Given an element \(u\in \mathrm{Hom}_{\mathcal D_M}(\mathcal{M},\gamma_\ast(\mathcal{M}))\) the authors introduce a Hochschild Lefschetz class \(hh^\gamma(\mathcal{M},u)\in H^0(X,\mathcal{HH}(\hat{\mathcal{E}}_X,\hat{\mathcal{E}}^\gamma_X))\), where \(X=T^\ast M\), \(\hat{\mathcal{E}}_X\) is the sheaf of formal microdifferential operators on \(X\), and \(\mathcal{HH}\) stands for Hochschild homology. They prove that it satisfies nice formulas under the direct image functor thus generalizing the Kashiwara-Schapira Hochschild class (case \(\gamma=\mathrm{id}\)).
Let then \(\Gamma\) be a finite group acting on \(M\) by holomorphic diffeomorphisms. Every \(\gamma\in\Gamma\) defines an element \(\gamma\in \mathrm{Hom}_{\mathcal D_M}(\mathcal{M},\gamma_\ast(\mathcal{M}))\). Using the expression \(\displaystyle \frac{1}{|\Gamma|}\sum_{\gamma\in\Gamma}hh^\gamma(\mathcal{M},\gamma)\) the authors introduce the orbifold Hochschild class of \(\mathcal{M}\) on the quotient orbifold \(Q_X=X/\Gamma\) and prove a Riemann-Roch formula for the Euler class of a good \(\Gamma\)-equivariant coherent \(\mathcal D_M\)-module \(\mathcal{M}\) on \(M\), for \(M\) compact.

MSC:

53D55 Deformation quantization, star products
32F10 \(q\)-convexity, \(q\)-concavity
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results

References:

[1] Bressler, P., Nest, R., Tsygan, B.: Riemann-Roch theorems via deformation quantization, I, II. Adv. Math. 167(1), 1-25, 26-73 (2002) · Zbl 1021.53064
[2] Dolgushev, V., Etingof, P.: Hochschild cohomology of quantized symplectic orbifolds and the Chen-Ruan cohomology. Int. Math. Res. Notices 27, 1657-1688 (2005) · Zbl 1088.53061 · doi:10.1155/IMRN.2005.1657
[3] Engeli, M., Felder, G.: A Riemann-Roch-Hirzebruch formula for traces of differential operators. Ann. Sci. Éc. Norm. Supér. (4) 41(4), 621-653 (2008) · Zbl 1163.32009
[4] Fedosov, B.V.: On \[G\]-trace and \[G\]-index in deformation quantization. Lett. Math. Phys. 52, 29-49 (2000) · Zbl 0998.53058 · doi:10.1023/A:1007601802484
[5] Feigin, B., Felder, G., Shoikhet, B.: Hochschild cohomology of the Weyl algebra and traces in deformation quantization. Duke Math. J. 127(3), 487-517 (2005) · Zbl 1106.53055 · doi:10.1215/S0012-7094-04-12733-2
[6] Felder, G., Tang, X.: Equivariant Lefschetz number of differential operators. Math. Z. 266(2), 451-470 (2010) · Zbl 1205.32020 · doi:10.1007/s00209-009-0579-7
[7] Guillermou, S.: Lefschetz class of elliptic pairs. Duke Math. J. 85(2), 273-314 (1996) · Zbl 0876.58046 · doi:10.1215/S0012-7094-96-08513-0
[8] Kashiwara, M.: D-modules and Microlocal Calculus. Translations of Mathematical Monographs, vol. 217. American Mathematical Society, New York (2003) · Zbl 1017.32012
[9] Kashiwara, M., Schapira, P.: Deformation quantization modules. Astésrique, arXiv:1003.3304. (to appear, 2012) · Zbl 1260.32001
[10] Neumaier, N., Pflaum, M., Posthuma, H., Tang, X.: Homology of formal deformations of proper étale groupoids. J. Reine Angew. Math. 593, 117-168 (2006) · Zbl 1246.53120
[11] Pflaum, M., Posthuma, H., Tang, X.: An algebraic index theorem for orbifolds. Adv. Math. 210(1), 83-121 (2007) · Zbl 1119.58014 · doi:10.1016/j.aim.2006.05.018
[12] Pflaum, M., Posthuma, H., Tang, X.: Cyclic cocycles in deformation quantization and higher index theorems. Adv. Math. 223(6), 1958-2021 (2010) · Zbl 1190.53087 · doi:10.1016/j.aim.2009.10.012
[13] Polesello, P., Schapira, P.: Stacks of quantization-deformation modules over complex symplectic manifolds. Int. Math. Res. Notices 49, 2637-2664 (2004) · Zbl 1086.53107 · doi:10.1155/S1073792804132819
[14] Ramadoss, A.: Some notes on the Feigin-Losev-Shoikhet integral conjecture. J. Noncommut. Geom. 2, 405-448 (2008) · Zbl 1194.32010
[15] Schapira, P., Schneider, J.: Elliptic pairs. I. Relative finiteness and duality. Index theorem for elliptic pairs. Astérisque 224, 5-60 (1994) · Zbl 0856.58038
[16] Schapira, P., Schneiders, J.: Elliptic pairs. II. Euler class and relative index theorem. Index theorem for elliptic pairs. Astérisque 224, 61-98 (1994) · Zbl 0856.58039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.