×

Variational implementation of immersed finite element methods. (English) Zbl 1253.74035

Summary: Dirac-\(\delta \) distributions are often crucial components of the solid-fluid coupling operators in immersed solution methods for fluid-structure interaction (FSI) problems. This is certainly so for methods like the immersed boundary method (IBM) or the immersed finite element method (IFEM), where Dirac-\(\delta \) distributions are approximated via smooth functions. By contrast, a truly variational formulation of immersed methods does not require the use of Dirac-\(\delta \) distributions, either formally or practically. This has been shown in the finite element immersed boundary method (FEIBM), where the variational structure of the problem is exploited to avoid Dirac-\(\delta \) distributions at both the continuous and the discrete level.
In this paper, we generalize the FEIBM to the case where an incompressible Newtonian fluid interacts with a general hyperelastic solid. Specifically, we allow (i) the mass density to be different in the solid and the fluid, (ii) the solid to be either viscoelastic of differential type or purely elastic, and (iii) the solid to be either compressible or incompressible. At the continuous level, our variational formulation combines the natural stability estimates of the fluid and elasticity problems. In immersed methods, such stability estimates do not transfer to the discrete level automatically due to the non-matching nature of the finite dimensional spaces involved in the discretization. After presenting our general mathematical framework for the solution of FSI problems, we focus in detail on the construction of natural interpolation operators between the fluid and the solid discrete spaces, which guarantee semi-discrete stability estimates and strong consistency of our spatial discretization.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S05 Finite element methods applied to problems in solid mechanics
74S15 Boundary element methods applied to problems in solid mechanics

References:

[1] Alouges, F.; DeSimone, A.; Heltai, L., Numerical strategies for stroke optimization of axisymmetric microswimmers, Math. Models Methods Appl. Sci., 21, 02, 361-387 (2011) · Zbl 1315.65100
[2] Alouges, F.; DeSimone, A.; Lefebvre, A., Optimal strokes for low Reynolds number swimmers: an example, J. Nonlinear Sci., 18, 3, 277-302 (2008) · Zbl 1146.76062
[3] W. Bangerth, R. Hartmann, G. Kanschat, deal.II differential equations analysis library—Technical reference, 1998-2006. <http://www.dealii.org>; W. Bangerth, R. Hartmann, G. Kanschat, deal.II differential equations analysis library—Technical reference, 1998-2006. <http://www.dealii.org>
[4] Bangerth, W.; Hartmann, R.; Kanschat, G., deal.II—A general purpose object oriented finite element library, ACM T. Math. Softw. (TOMS), 33, 4, 24:1-24:27 (2007) · Zbl 1365.65248
[5] Bartlett, R. A.; Gay, D. M.; Phipps, E. T., Automatic differentiation of C++ codes for large-scale scientific computing, (Alexandrov, V. N.; van Albada, G. D.; Sloot, P. M.A.; Dongarra, J., Computational Science - ICCS 2006. Computational Science - ICCS 2006, Lecture Notes in Computer Science, vol. 3994 (2006), Springer: Springer Heidelberg), 525-532 · Zbl 1157.65333
[6] Blanco, P. J.; Feijó, R. A.; Dari, E. A., A variational framework for fluid-solid interaction problems based on immersed domains: theoretical bases, Comput. Methods Appl. Mech. Engrg., 197, 25-28, 2353-2371 (2008) · Zbl 1158.74347
[7] Blanco, P. J.; Feijó, R. A.; Urquiza, S. A., A variational approach for coupling kinematically incompatible structural models, Comput. Methods Appl. Mech. Engrg., 197, 17-18, 1577-1602 (2008) · Zbl 1194.74187
[8] Boffi, D.; Cavallini, N.; Gastaldi, L., Finite element approach to immersed boundary method with different fluid and solid densities, Math. Models Methods Appl. Sci., 21, 12, 2523-2550 (2011) · Zbl 1242.76190
[9] Boffi, D.; Gastaldi, L., A finite element approach for the immersed boundary method, Comput. Struct., 81, 8-11, 491-501 (2003)
[10] Boffi, D.; Gastaldi, L.; Heltai, L., On the CFL condition for the finite element immersed boundary method, Comput. Struct., 85, 11-14, 775-783 (2007)
[11] Boffi, D.; Gastaldi, L.; Heltai, L.; Peskin, C. S., On the hyper-elastic formulation of the immersed boundary method, Comput. Methods Appl. Math. Mech., 197, 25-28, 2210-2231 (2008) · Zbl 1158.74523
[12] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15 (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0788.73002
[13] de Berg, M.; Cheong, O.; van Kreveld, M.; Overmars, M., Computational Geometry: Algorithms and Applications (2008), Springer-Verlag: Springer-Verlag Berlin · Zbl 1140.68069
[14] Evans, L. C., Partial differential equations. Partial differential equations, Graduate Studies in Mathematics (2010), American Mathematical Society · Zbl 1194.35001
[15] Gay, D. M., Automatic differentiation of nonlinear AMPL models, (Griewank, A.; Corliss, G., Automatic Differentiation of Algorithms: Theory, Implementation, and Application (1991), SIAM), 61-73 · Zbl 0782.65026
[16] Golub, G. H.; Van Loan, C. F., Matrix computations. Matrix computations, Johns Hopkins Studies in the Mathematical Sciences (1996), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, MD · Zbl 0865.65009
[17] Griffith, B. E., On the volume conservation of the immersed boundary method, Commun. Comput. Phys., 12, 401-432 (2012) · Zbl 1373.74098
[18] B. Griffith, X. Luo, Hybrid finite difference/finite element version of the immersed boundary method, J. Comput. Phys. (2012), submitted in revised form.; B. Griffith, X. Luo, Hybrid finite difference/finite element version of the immersed boundary method, J. Comput. Phys. (2012), submitted in revised form.
[19] Gurtin, M. E.; Fried, E.; Anand, L., The Mechanics and Thermodynamics of Continua (2010), Cambridge University Press: Cambridge University Press New York
[20] L. Heltai, The finite element immersed boundary method, Ph.D. Thesis, Università di Pavia, 2006.; L. Heltai, The finite element immersed boundary method, Ph.D. Thesis, Università di Pavia, 2006. · Zbl 1388.76123
[21] Heltai, L., On the stability of the finite element immersed boundary method, Comput. Struct., 86, 7-8, 598-617 (2008)
[22] M. Heroux, R. Bartlett, V.H.R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams, An overview of trilinos, Technical Report SAND2003-2927, Sandia National Laboratories, 2003.; M. Heroux, R. Bartlett, V.H.R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams, An overview of trilinos, Technical Report SAND2003-2927, Sandia National Laboratories, 2003. · Zbl 1136.65354
[23] Heywood, J. G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19, 2, 275-311 (1982) · Zbl 0487.76035
[24] Hindmarsh, A.; Brown, P.; Grant, K.; Lee, S.; Serban, R.; Shumaker, D.; Woodward, C., SUNDIALS: suite of nonlinear and differential/algebraic equation solvers, ACM T. Math. Softw. (TOMS), 31, 3, 363-396 (2005) · Zbl 1136.65329
[25] Hughes, T. J.R.; Liu, W. K.; K., Z. T., Lagrangian-Eulerian finite element formulations for incompressible viscous flows, Comput. Methods Appl. Mech. Engrg., 29, 329-349 (1981) · Zbl 0482.76039
[26] Levinson, M.; Burgess, I. W., Comparison of some simple constitutive relations for slightly compressible rubber-like materials, Int. J. Mech. Sci., 13, 6, 563-572 (1971)
[27] Liu, W. K.; Kim, D. W.; Tang, S., Mathematical foundations of the immersed finite element method, Comput. Mech., 39, 3, 211-222 (2007) · Zbl 1178.74170
[28] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 3, 220-252 (1977) · Zbl 0403.76100
[29] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[30] F.J. Thompson, B.K. Soni, N.P. Weatherill, Handbook of Grid Generation, CRC Press, 1998. <http://www.crcpress.com/product/isbn/0849326877; F.J. Thompson, B.K. Soni, N.P. Weatherill, Handbook of Grid Generation, CRC Press, 1998. <http://www.crcpress.com/product/isbn/0849326877 · Zbl 0980.65500
[31] Truesdell, C.; Toupin, R. A., The classical field theories, (Flügge, S., Principles of Classical Mechanics and Field Theory. Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, vol. III/1 (1960), Springer-Verlag: Springer-Verlag Berlin), 226-858
[32] Wang, X.; Liu, W. K., Extended immersed boundary method using FEM and RKPM, Comput. Methods Appl. Mech. Engrg., 193, 12-14, 1305-1321 (2004) · Zbl 1060.74676
[33] Wang, X. S.; Zhang, L. T.; Liu, W. K., On computational issues of immersed finite element methods, J. Comput. Phys., 228, 7, 2535-2551 (2009) · Zbl 1158.74049
[34] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput. Methods Appl. Mech. Engrg., 193, 21-22, 2051-2067 (2004) · Zbl 1067.76576
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.