×

Finite element approach to immersed boundary method with different fluid and solid densities. (English) Zbl 1242.76190

Summary: The Immersed Boundary Method (IBM) has been designed by Peskin for the modeling and the numerical approximation of fluid-structure interaction problems, where flexible structures are immersed in a fluid. In this approach, the Navier-Stokes equations are considered everywhere and the presence of the structure is taken into account by means of a source term which depends on the unknown position of the structure. These equations are coupled with the condition that the structure moves at the same velocity of the underlying fluid.
Recently, a finite element version of the IBM has been developed, which offers interesting features for both the analysis of the problem under consideration and the robustness and flexibility of the numerical scheme. Initially, we considered structure and fluid with the same density, as it often happens when dealing with biological tissues. Here we study the case of a structure which can have a density higher than that of the fluid. The higher density of the structure is taken into account as an excess of Lagrangian mass located along the structure, and can be dealt with in a variational way in the finite element approach.
The numerical procedure to compute the solution is based on a semi-implicit scheme. In fluid-structure simulations, nonimplicit schemes often produce instabilities when the density of the structure is close to that of the fluid. This is not the case for the IBM approach. In fact, we show that the scheme enjoys the same stability properties as in the case of equal densities.

MSC:

76M15 Boundary element methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] Badia, S.Nobile, F.Vergara, C., J. Comput. Phys.227, 7027 (2008). · Zbl 1140.74010
[2] Badia, S.Quaini, A.Quarteroni, A., Comput. Methods Appl. Mech. Engrg.197, 4216 (2008).
[3] Badia, S.Quaini, A.Quarteroni, A., SIAM J. Sci. Comput.30, 1778 (2008). · Zbl 1368.74021
[4] Badia, S.Nobile, F.Vergara, C., Comput. Methods Appl. Mech. Engrg.198, 2768 (2009).
[5] Boffi, D.Gastaldi, L., Comput. & Struct.81, 491 (2003).
[6] Boffi, D.Gastaldi, L.Heltai, L., Progress in Engineering Computational Technology, eds. Topping, B. H. V.Soares, C. A. Mota (Saxe-Coburg, 2004) pp. 271-298.
[7] Boffi, D.Gastaldi, L.Heltai, L., Math. Models Methods Appl. Sci.17, 1479 (2007). · Zbl 1186.76661
[8] Boffi, D.Gastaldi, L.Heltai, L., Comput. & Struct.85, 775 (2007).
[9] Boffi, D.et al., Comput. Methods Appl. Mech. Engrg.197, 2210 (2008).
[10] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, 15, 1991, Springer-Verlag · Zbl 0788.73002
[11] Burman, E.Fernández, M. A., Comput. Methods Appl. Mech. Engrg.198, 766 (2009). · Zbl 1229.76045
[12] Causin, P.Gerbeau, J. F.Nobile, F., Comput. Methods Appl. Mech. Engrg.194, 4506 (2005). · Zbl 1101.74027
[13] Deparis, S.et al., Comput. Methods Appl. Mech. Engrg.195, 5797 (2006).
[14] Deparis, S.Fernández, M. A.Formaggia, L., M2AN Math. Model. Numer. Anal.37, 601 (2003). · Zbl 1118.74315
[15] Diniz dos Santos, N.Gerbeau, J.-F.Bourgat, J.-F., Comput. Methods Appl. Mech. Engrg.197, 1750 (2008). · Zbl 1194.74383
[16] Farhat, C.van der Zeeb, K.Geuzainec, P., Comput. Methods Appl. Mech. Engrg.195, 1973 (2006).
[17] Felippa, C. A.Park, K. C.Farhat, C., Comput. Methods Appl. Mech. Engrg.190, 3247 (2001). · Zbl 0985.76075
[18] Fernández, M. A.Gerbeau, J.-F.Grandmont, C., Internat. J. Numer. Methods Engrg.69, 794 (2007). · Zbl 1194.74393
[19] Fernández, M. A.Moubachir, M., C. R. Math. Acad. Sci. Paris336, 681 (2003). · Zbl 1140.74571
[20] Fernández, M. A.Gerbeau, J.-F., Cardiovascular Mathematics, 1 (Springer, 2009) pp. 307-346.
[21] Gerbeau, J. F.Vidrascu, M., Math. Model. Numer. Anal.37, 631 (2003). · Zbl 1070.74047
[22] Gerstenberger, A.Wall, W. A., Comput. Methods Appl. Mech. Engrg.197, 1699 (2008). · Zbl 1194.76117
[23] Glowinski, R., Handbook of Numerical AnalysisIX (North-Holland, 2003) pp. 3-1176. · Zbl 1020.00003
[24] Guidoboni, G.et al., J. Comput. Phys.228, 6916 (2009).
[25] Guidoboni, G.et al., Appl. Math. Lett.22, 684 (2009).
[26] Heltai, L., Comput. & Struct.86, 598 (2008).
[27] Heywood, J. G.Rannacher, R., SIAM J. Numer. Anal.19, 275 (1982).
[28] Y. Kim and C. S. Peskin, Penalty immersed boundary method for an elastic boundary with mass, Preprint of the Courant Institute of Mathematical Sciences, New York University, 2005.
[29] Le Tallec, P.Mouro, J., Comput. Methods Appl. Mech. Engrg.190, 3039 (2001).
[30] Matthies, H. G.Niekamp, R.Steindorf, J., Comput. Methods Appl. Mech. Engrg.195, 2028 (2006). · Zbl 1142.74050
[31] Matthies, H. G.Steindorf, J., Comput. & Struct.81, 805 (2003).
[32] Mori, Y.Peskin, C. S., Comput. Methods Appl. Mech. Engrg.197, 2049 (2008). · Zbl 1158.74533
[33] F. Nobile, Numerical approximation of fluid-structure interaction problems with application to haemodynamics, Ph.D. Thesis, École Polythechnique Fédérale de Lausanne, 2001.
[34] Peskin, C. S., Acta Numerica 2002, 2002, Cambridge Univ. Press
[35] Peskin, C. S., J. Comput. Phys.25, 220 (1977). · Zbl 0403.76100
[36] Quarteroni, A.Tuveri, M.Veneziani, A., Comput. Visual Sci.2, 163 (2000). · Zbl 1096.76042
[37] Zhang, L.et al., Comput. Methods Appl. Mech. Engrg.193, 2051 (2004).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.