×

High-order unconditionally maximum-principle-preserving parametric integrating factor Runge-Kutta schemes for the nonlocal Allen-Cahn equation. (English) Zbl 07763842

Summary: We utilize the second-order quadrature-based finite difference method and the high-order parametric integrating factor Runge-Kutta (pIFRK) integrators to construct efficient and accurate schemes for solving the nonlocal Allen-Cahn equation. These schemes preserve the maximum principle for any time-step, and exhibit up to fourth-order accuracy in the temporal direction. We establish a rigorous error estimate and an asymptotic compatibility analysis for the pIFRK schemes. Numerical experiments demonstrate the accuracy and structure-preserving property of the proposed schemes, verify their asymptotic compatibility, and investigate the discontinuity of the nonlocal Allen-Cahn equation under certain conditions.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Lxx Numerical methods for ordinary differential equations
35Kxx Parabolic equations and parabolic systems
Full Text: DOI

References:

[1] Allen, S. M.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 6, 1085-1095 (1979)
[2] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 1, 139-165 (1998) · Zbl 1398.76051
[3] Beneš, M.; Chalupeckỳ, V.; Mikula, K., Geometrical image segmentation by the Allen-Cahn equation, Appl. Numer. Math., 51, 2-3, 187-205 (2004) · Zbl 1055.94502
[4] Bobaru, F.; Duangpanya, M., The peridynamic formulation for transient heat conduction, Int. J. Heat Mass Transf., 53, 19-20, 4047-4059 (2010) · Zbl 1194.80010
[5] Butcher, J., Runge-Kutta methods for ordinary differential equations, (COE Workshop on Numerical Analysis Kyushu University (2005)) · Zbl 1330.65109
[6] Chen, L.-Q., Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 1, 113-140 (2002)
[7] Cui, C.; Liu, J.; Mo, Y.; Zhai, S., An effective operator splitting scheme for two-dimensional conservative nonlocal Allen-Cahn equation, Appl. Math. Lett., 130, Article 108016 pp. (2022) · Zbl 1524.65330
[8] Du, J.; Yang, Y., Third-order conservative sign-preserving and steady-state-preserving time integrations and applications in stiff multispecies and multireaction detonations, J. Comput. Phys., 395, 489-510 (2019) · Zbl 1452.76086
[9] Du, Q., Nonlocal Modeling, Analysis, and Computation, CBMS-NSF Regional Conf. Ser. Appl. Math., vol. 94 (2019), SIAM: SIAM Philadelphia, PA · Zbl 1423.00007
[10] Du, Q.; Yang, J., Asymptotically compatible Fourier spectral approximations of nonlocal Allen-Cahn equations, SIAM J. Numer. Anal., 54, 3, 1899-1919 (2016) · Zbl 1342.65198
[11] Du, Q.; Yang, J., Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications, J. Comput. Phys., 332, 118-134 (2017) · Zbl 1380.65435
[12] Du, Q.; Gunzburger, M.; Lehoucq, R. B.; Zhou, K., Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54, 4, 667-696 (2012) · Zbl 1422.76168
[13] Du, Q.; Ju, L.; Li, X.; Qiao, Z., Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation, SIAM J. Numer. Anal., 57, 2, 875-898 (2019) · Zbl 1419.65018
[14] Du, Q.; Tao, Y.; Tian, X.; Yang, J., Asymptotically compatible discretization of multidimensional nonlocal diffusion models and approximation of nonlocal Green’s functions, IMA J. Numer. Anal., 39, 2, 607-625 (2019) · Zbl 1466.65222
[15] Du, Q.; Yang, J.; Zhou, Z., Time-fractional Allen-Cahn equations: analysis and numerical methods, J. Sci. Comput., 85, 2, 1-30 (2020) · Zbl 1456.65062
[16] Du, Q.; Ju, L.; Li, X.; Qiao, Z., Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes, SIAM Rev., 63, 2, 317-359 (2021) · Zbl 1465.35081
[17] Evans, L. C.; Soner, H. M.; Souganidis, P. E., Phase transitions and generalized motion by mean curvature, Commun. Pure Appl. Math., 45, 9, 1097-1123 (1992) · Zbl 0801.35045
[18] Eyre, D. J., Unconditionally gradient stable time marching the Cahn-Hilliard equation, (MRS Online Proceedings Library (OPL), vol. 529 (1998))
[19] Fu, Z.; Tang, T.; Yang, J., Energy plus maximum bound preserving Runge-Kutta methods for the Allen-Cahn equation, J. Sci. Comput., 92, 3, 97 (2022) · Zbl 1502.65063
[20] Gilboa, G.; Osher, S., Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 3, 1005-1028 (2009) · Zbl 1181.35006
[21] Gong, Y.; Zhao, J.; Wang, Q., Arbitrarily high-order linear energy stable schemes for gradient flow models, J. Comput. Phys., 419, Article 109610 pp. (2020) · Zbl 07507221
[22] Gong, Y.; Ji, B.; Liao, H.-l., A maximum bound principle preserving iteration technique for a class of semilinear parabolic equations, Appl. Numer. Math., 184, 482-495 (2023) · Zbl 1505.65246
[23] Guan, Z.; Lowengrub, J.; Wang, C., Convergence analysis for second order accurate convex splitting schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations, Math. Methods Appl. Sci., 40, 18, 6836-6863 (2017) · Zbl 1387.65087
[24] Huang, J.; Shu, C.-W., Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms, J. Comput. Phys., 361, 111-135 (2018) · Zbl 1422.65259
[25] Isherwood, L.; Grant, Z. J.; Gottlieb, S., Strong stability preserving integrating factor Runge-Kutta methods, SIAM J. Numer. Anal., 56, 6, 3276-3307 (2018) · Zbl 1404.65064
[26] Ju, L.; Li, X.; Qiao, Z.; Yang, J., Maximum bound principle preserving integrating factor Runge-Kutta methods for semilinear parabolic equations, J. Comput. Phys., 439, Article 110405 pp. (2021) · Zbl 1537.65101
[27] Kraaijevanger, J. F.B. M., Contractivity of Runge-Kutta methods, BIT Numer. Math., 31, 3, 482-528 (1991) · Zbl 0763.65059
[28] Lawson, J. D., Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal., 4, 3, 372-380 (1967) · Zbl 0223.65030
[29] Li, B.; Yang, J.; Zhou, Z., Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations, SIAM J. Sci. Comput., 42, 6, A3957-A3978 (2020) · Zbl 1456.65117
[30] Li, D.; Qiao, Z.; Tang, T., Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations, SIAM J. Numer. Anal., 54, 3, 1653-1681 (2016) · Zbl 1346.35162
[31] Li, D.; Quan, C.; Xu, J., Stability and convergence of strang splitting. Part I: scalar Allen-Cahn equation, J. Comput. Phys., 458, Article 111087 pp. (2022) · Zbl 07527714
[32] Li, J.; Li, X.; Ju, L.; Feng, X., Stabilized integrating factor Runge-Kutta method and unconditional preservation of maximum bound principle, SIAM J. Sci. Comput., 43, 3, A1780-A1802 (2021) · Zbl 1486.65146
[33] Nan, C.; Song, H., The high-order maximum-principle-preserving integrating factor Runge-Kutta methods for nonlocal Allen-Cahn equation, J. Comput. Phys., 456, Article 111028 pp. (2022) · Zbl 07518106
[34] Qiao, Z.; Sun, S., Two-phase fluid simulation using a diffuse interface model with Peng-Robinson equation of state, SIAM J. Sci. Comput., 36, 4, B708-B728 (2014) · Zbl 1305.76117
[35] Quan, C.; Wang, B., Energy stable L2 schemes for time-fractional phase-field equations, J. Comput. Phys., 458, Article 111085 pp. (2022) · Zbl 1531.65121
[36] Shen, J.; Tang, T.; Yang, J., On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Commun. Math. Sci., 14, 6, 1517-1534 (2016) · Zbl 1361.65059
[37] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1989) · Zbl 0653.65072
[38] Sun, J.; Zhang, H.; Qian, X.; Song, S., A family of structure-preserving exponential time differencing Runge-Kutta schemes for the viscous Cahn-Hilliard equation, J. Comput. Phys., 492, Article 112414 pp. (2023) · Zbl 07742900
[39] Tang, T.; Yang, J., Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle, J. Comput. Math., 451-461 (2016) · Zbl 1374.65154
[40] Tian, X.; Du, Q., Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM J. Numer. Anal., 51, 6, 3458-3482 (2013) · Zbl 1295.82021
[41] Tian, X.; Du, Q., Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer. Anal., 52, 4, 1641-1665 (2014) · Zbl 1303.65098
[42] Tian, X.; Du, Q., Asymptotically compatible schemes for robust discretization of parametrized problems with applications to nonlocal models, SIAM Rev., 62, 1, 199-227 (2020) · Zbl 1485.65058
[43] Yang, J.; Du, Q.; Zhang, W., Uniform \(L^p\)-bound of the Allen-Cahn equation and its numerical discretization, Int. J. Numer. Anal. Model., 15 (2018) · Zbl 1408.65076
[44] Yao, C.; Fan, H.; Zhao, Y.; Shi, Y.; Wang, F., Fast algorithm for nonlocal Allen-Cahn equation with scalar auxiliary variable approach, Appl. Math. Lett., 126, Article 107805 pp. (2022) · Zbl 1524.65431
[45] Yue, P.; Feng, J. J.; Liu, C.; Shen, J., A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515, 293-317 (2004) · Zbl 1130.76437
[46] Zhai, S.; Weng, Z.; Feng, X., Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model, Appl. Math. Model., 40, 2, 1315-1324 (2016) · Zbl 1446.65135
[47] Zhai, S.; Weng, Z.; Feng, X.; He, Y., Stability and error estimate of the operator splitting method for the phase field crystal equation, J. Sci. Comput., 86, 1-23 (2021) · Zbl 1456.65136
[48] Zhang, H.; Yan, J.; Qian, X.; Song, S., Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge-Kutta schemes for Allen-Cahn equation, Appl. Numer. Math., 161, 372-390 (2021) · Zbl 07310823
[49] Zhang, H.; Yan, J.; Qian, X.; Chen, X.; Song, S., Explicit third-order unconditionally structure-preserving schemes for conservative Allen-Cahn equations, J. Sci. Comput., 90, 1, 1-29 (2022) · Zbl 07435301
[50] Zhang, H.; Yan, J.; Qian, X.; Song, S., Up to fourth-order unconditionally structure-preserving parametric single-step methods for semilinear parabolic equations, Comput. Methods Appl. Mech. Eng., 393, Article 114817 pp. (2022) · Zbl 1507.65125
[51] Zhang, H.; Qian, X.; Song, S., Third-order accurate, large time-stepping and maximum-principle-preserving schemes for the Allen-Cahn equation, Numer. Algorithms, 1-38 (2023)
[52] Zhang, H.; Qian, X.; Xia, J.; Song, S., Efficient inequality-preserving integrators for differential equations satisfying forward Euler conditions, ESAIM Math. Model. Numer. Anal., 57, 3, 1619-1655 (2023) · Zbl 1522.65127
[53] Zhang, H.; Qian, X.; Xia, J.; Song, S., Unconditionally maximum-principle-preserving parametric integrating factor two-step Runge-Kutta schemes for parabolic Sine-Gordon equations, CSIAM Trans. Appl. Math., 4, 1, 177-224 (2023)
[54] Zhang, Q.; Shu, C. W., Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal., 48, 3, 1038-1063 (2010) · Zbl 1217.65178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.