×

Categorified central extensions, étale Lie 2-groups and Lie’s third theorem for locally exponential Lie algebras. (English) Zbl 1238.22012

The paper under review makes an important contribution to infinite-dimensional Lie theory, by finding a category of group-like objects that allow one to integrate a locally convex Lie algebra \({\mathfrak g}\) which is locally exponential, in the sense that it has a circular convex neighbourhood \(U\) of 0 which is a local Lie group with respect to a locally defined multiplication \(\ast\) with the property \((tx)\ast(sx)=(t+s)x\) if \(x\in U\) and \(\max\{| t|,| s|,| t+s|\}\leq1\) and such that the second-order term in the Taylor expansion of \(\ast\) at \((0,0)\in U\times U\) is \(\frac{1}{2}[x,y]\). The significance of this notion in the theory of infinite-dimensional Lie groups modeled on locally convex spaces is discussed in the survey paper by K.-H. Neeb [Jpn. J. Math. (3) 1, No. 2, 291–468 (2006; Zbl 1161.22012)].
On the other hand, a 2-group is a small groupoid \({\mathcal G}\) endowed with a multiplication functor \(\otimes:{\mathcal G}\times{\mathcal G}\to{\mathcal G}\), an inversion functor \(\bar{}:{\mathcal G}\to{\mathcal G}\), a distinguished object \({\mathbb I}\), and a family of natural isomorphisms \(\alpha_{g,h,k}:(g\otimes h)\otimes k\to g\otimes(h\otimes k)\), where \(g,h,k\) are objects of \({\mathcal G}\), subject to the assumptions: \({\mathbb I}=\bar{\mathbb I}\), \(g\otimes{\mathbb I}=g={\mathbb I}\otimes g\), \(g\otimes\bar g=\bar g\otimes g={\mathbb I}\) on objects and morphisms; the pentagon identities \(\alpha_{g,h,k\otimes l}\circ\alpha_{g\otimes h,k,l} =(\text{id}_g\otimes\alpha_{h,k,l}) \circ\alpha_{g,h\otimes k,l} \circ(\alpha_{g,h,k}\otimes\text{id}_l)\); the requirement that \(\alpha_{g,\bar g,g}=\text{id}_g\), \(\alpha_{\bar g,g,\bar g}=\text{id}_{\bar g}\), and \(\alpha_{g,h,k}\) is an identity whenever one of \(g,h,k\) is \({\mathbb I}\).
A Lie 2-group is a pair \(({\mathcal G},{\mathcal U})\) consisting of a 2-group \({\mathcal G}\) and a full subcategory \({\mathcal U}\) containing \({\mathbb I}\), satisfying the following conditions: (1) \({\mathcal U}\) is endowed with the structure of a smooth 2-space, also called infinite-dimensional Lie groupoid. That is, the sets of objects and morphisms of \({\mathcal U}\) are smooth manifolds modeled on locally convex spaces, the source and target maps are smooth surjective submersions in a strong sense, and the other structure maps are smooth. (2) There exists a full subcategory \({\mathcal V}\) of \({\mathcal U}\) whose set of objects is open in the set of objects of \({\mathcal U}\), such that \({\mathbb I}\in{\mathcal V}\), \(\bar{\mathcal V}={\mathcal V}\), \({\mathcal V}\otimes{\mathcal V}\subseteq{\mathcal U}\), the functors \(\otimes|_{{\mathcal V}\times{\mathcal V}}:{\mathcal V}\times{\mathcal V}\to{\mathcal U}\) and \(\bar{}|_{\mathcal V}:{\mathcal V}\to{\mathcal V}\) are smooth, and moreover \({\mathcal V}\) generates \({\mathcal G}\).
One says that \(({\mathcal G},{\mathcal U})\) is an étale Lie 2-group if all of the structure maps of \({\mathcal U}\) are local diffeomorphisms. Under this assumption, one notes that the multiplication functor defines the structure of a local infinite-dimensional Lie group on the set of objects of \({\mathcal G}\), hence it gives rise to a locally convex Lie algebra, to be thought of as the Lie algebra of \(({\mathcal G},{\mathcal U})\). This is actually a functor from the suitably defined categories of étale Lie 2-groups to the category of Lie algebras (Remark 5.13).
With this terminology at hand, we can now state one of the main results of the paper under review, which is an infinite-dimensional version of S. Lie’s third theorem: If \({\mathfrak g}\) is a Mackey-complete locally exponential Lie algebra, then there exists an étale Lie 2-group whose Lie algebra is isomorphic to \({\mathfrak g}\) (Theorem 6.5). The paper concludes with a short section collecting brief presentations of perspectives on further development of the theory. Besides this, many other questions naturally arise. To mention one, it would be interesting to establish the version in this infinite-dimensional setting of the uniqueness of the connected, simply connected Lie group associated with a finite-dimensional Lie algebra.

MSC:

22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
58H05 Pseudogroups and differentiable groupoids
55N20 Generalized (extraordinary) homology and cohomology theories in algebraic topology

Citations:

Zbl 1161.22012

References:

[1] Agore, A. L.; Militaru, G., Crossed product of groups. Applications (2008) · Zbl 1186.20021
[2] Baer, R., The homomorphism theorems for loops, Amer. J. Math., 67, 450-460 (1945) · Zbl 0063.00166
[3] Baez, J. C.; Crans, A. S., Higher-dimensional algebra. VI. Lie 2-algebras, Theory Appl. Categ., 12, 492-538 (2004), (electronic) · Zbl 1057.17011
[4] Baez, J. C.; Crans, A. S.; Stevenson, D.; Schreiber, U., From loop groups to 2-groups, Homology, Homotopy Appl., 9, 2, 101-135 (2007) · Zbl 1122.22003
[5] Baez, J. C.; Hoffnung, A. E., Convenient categories of smooth spaces, Trans. Amer. Math. Soc., 363, 5789-5825 (2011) · Zbl 1237.58006
[6] Baez, J. C.; Hoffnung, A. E.; Rogers, C. L., Categorified symplectic geometry and the classical string, Comm. Math. Phys., 293, 3, 701-725 (2010) · Zbl 1192.81208
[7] Baez, J. C.; Lauda, A. D., Higher-dimensional algebra. V. 2-Groups, Theory Appl. Categ., 12, 423-491 (2004), (electronic) · Zbl 1056.18002
[8] Blanco, V.; Bullejos, M.; Faro, E., Categorical non-abelian cohomology and the Schreier theory of groupoids, Math. Z., 251, 1, 41-59 (2005) · Zbl 1100.18007
[9] Blohmann, C., Stacky Lie groups, Int. Math. Res. Not. IMRN (2008), Art. ID rnn 082, 51 pp · Zbl 1154.53053
[10] Bourbaki, N., Lie Groups and Lie Algebras. Chapters 1-3, Elements of Mathematics (1998), Springer-Verlag: Springer-Verlag Berlin, Reprint of the 1989 English translation · Zbl 0904.17001
[11] Bourgin, R. D.; Robart, T. P., An infinite dimensional approach to the third fundamental theorem of Lie, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 020, 10 pp · Zbl 1172.22005
[12] Breen, L., Théorie de Schreier supérieure, Ann. Sci. Ec. Norm. Super. (4), 25, 5, 465-514 (1992) · Zbl 0795.18009
[13] Brylinski, J.-L., Loop Spaces, Characteristic Classes and Geometric Quantization, Progr. Math., vol. 107 (1993), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA · Zbl 0823.55002
[14] Brylinski, J.-L.; McLaughlin, D., A geometric construction of the first Pontryagin class, (Quantum Topology. Quantum Topology, Ser. Knots Everything, vol. 3 (1993), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 209-220 · Zbl 0837.57022
[15] Cartan, E., Le troisième théorème fondamental de Lie, C. R. Math. Acad. Sci. Paris, 190, 914-916 (1930) · JFM 56.0373.01
[16] Cartan, E., La topologie des groupes de Lie, Actualités Sci. Indust., 358 (1936) · JFM 62.0441.02
[17] Crainic, M.; Fernandes, R. L., Integrability of Lie brackets, Ann. of Math. (2), 157, 2, 575-620 (2003) · Zbl 1037.22003
[18] Douady, A.; Lazard, M., Espaces fibrés en algèbres de Lie et en groupes, Invent. Math., 1, 133-151 (1966) · Zbl 0144.01804
[19] Eilenberg, S.; MacLane, S., Algebraic cohomology groups and loops, Duke Math. J., 14, 435-463 (1947) · Zbl 0029.34102
[20] Forrester-Barker, M., Group objects and internal categories (2002)
[21] Glöckner, H., Infinite-dimensional Lie groups without completeness restrictions, (Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups. Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, Bȩdlewo, 2000. Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups. Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, Bȩdlewo, 2000, Banach Center Publ., vol. 55 (2002), Polish Acad. Sci.: Polish Acad. Sci. Warsaw), 43-59 · Zbl 1020.58009
[22] Glöckner, H., Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal., 194, 2, 347-409 (2002) · Zbl 1022.22021
[23] Glöckner, H., Fundamentals of direct limit Lie theory, Compos. Math., 141, 6, 1551-1577 (2005) · Zbl 1082.22012
[24] Henriques, A., Integrating \(L_\infty \)-algebras, Compos. Math., 144, 4, 1017-1045 (2008) · Zbl 1152.17010
[25] Hofmann, K. H.; Morris, S. A., The Structure of Compact Groups, de Gruyter Stud. Math., vol. 25 (1998), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin, A primer for the student—a handbook for the expert · Zbl 0919.22001
[26] Hofmann, K. H.; Strambach, K., Topological and analytic loops, (Quasigroups and Loops: Theory and Applications. Quasigroups and Loops: Theory and Applications, Sigma Ser. Pure Math., vol. 8 (1990), Heldermann: Heldermann Berlin), 205-262 · Zbl 0747.22004
[27] Iglésias, P., La trilogie du moment, Ann. Inst. Fourier (Grenoble), 45, 3, 825-857 (1995) · Zbl 0836.58001
[28] Iglesias-Zemmour, P., The moment maps in diffeology, Mem. Amer. Math. Soc., 207, 972 (2010), vi+72 pp · Zbl 1203.53084
[29] Jacobson, N., Lie Algebras, Interscience Tracts Pure Appl. Math., vol. 10 (1962), Interscience Publishers (a division of John Wiley & Sons): Interscience Publishers (a division of John Wiley & Sons) New York, London · JFM 61.1044.02
[30] Kiechle, H.; Kinyon, M. K., Infinite simple Bol loops, Comment. Math. Univ. Carolin., 45, 2, 275-278 (2004) · Zbl 1101.20038
[31] Kriegl, A.; Michor, P. W., The Convenient Setting of Global Analysis, Math. Surveys Monogr., vol. 53 (1997), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0889.58001
[32] Lang, S., Fundamentals of Differential Geometry, Grad. Texts in Math., vol. 191 (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0932.53001
[33] Lempert, L., The problem of complexifying a Lie group, (Multidimensional Complex Analysis and Partial Differential Equations. Multidimensional Complex Analysis and Partial Differential Equations, São Carlos, 1995. Multidimensional Complex Analysis and Partial Differential Equations. Multidimensional Complex Analysis and Partial Differential Equations, São Carlos, 1995, Contemp. Math., vol. 205 (1997), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 169-176 · Zbl 0887.22008
[34] Loday, J.-L., Spaces with finitely many nontrivial homotopy groups, J. Pure Appl. Algebra, 24, 2, 179-202 (1982) · Zbl 0491.55004
[35] MacLane, S., Homology, Grundlehren Math. Wiss., Bd. 114 (1963), Academic Press Inc.: Academic Press Inc. New York · Zbl 0133.26502
[36] Maier, P.; Neeb, K.-H., Central extensions of current groups, Math. Ann., 326, 2, 367-415 (2003) · Zbl 1029.22025
[37] Mickelsson, J., Kac-Moody groups, topology of the Dirac determinant bundle, and fermionization, Comm. Math. Phys., 110, 2, 173-183 (1987) · Zbl 0625.58043
[38] Murray, M. K.; Stevenson, D., Higgs fields, bundle gerbes and string structures, Comm. Math. Phys., 243, 3, 541-555 (2003) · Zbl 1085.53019
[39] Nagy, P. T.; Strambach, K., Loops in Group Theory and Lie Theory, de Gruyter Exp. Math., vol. 35 (2002), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin · Zbl 1050.22001
[40] Neeb, K.-H., Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble), 52, 5, 1365-1442 (2002) · Zbl 1019.22012
[41] Neeb, K.-H., Towards a Lie theory of locally convex groups, Jpn. J. Math., 1, 2, 291-468 (2006) · Zbl 1161.22012
[42] Nikolaus, T.; Sachse, C.; Wockel, C., A smooth model for the string group (2011) · Zbl 1268.58009
[43] Nikolaus, T.; Waldorf, K., Four equivalent versions of non-Abelian gerbes (2011)
[44] Olver, P. J., Non-associative local Lie groups, J. Lie Theory, 6, 1, 23-51 (1996) · Zbl 0862.22005
[45] Pflugfelder, H. O., Quasigroups and Loops: Introduction, Sigma Ser. Pure Math., vol. 7 (1990), Heldermann Verlag: Heldermann Verlag Berlin · Zbl 0715.20043
[46] Porst, S. S., Strict 2-groups are crossed modules (2008)
[47] S.S. Porst, C. Wockel, Higher connected covers of topological groups via categorification, in preparation.; S.S. Porst, C. Wockel, Higher connected covers of topological groups via categorification, in preparation.
[48] Pradines, J., Troisième théorème de Lie les groupoïdes différentiables, C. R. Acad. Sci. Paris Sér. A-B, 267, A21-A23 (1968) · Zbl 0172.03502
[49] Pressley, A.; Segal, G., Loop Groups, Oxford Math. Monogr. (1986), The Clarendon Press, Oxford University Press/Oxford Science Publications: The Clarendon Press, Oxford University Press/Oxford Science Publications New York · Zbl 0618.22011
[50] Schommer-Pries, C., Central extensions of smooth 2-groups and a finite-dimensional string 2-group, Geom. Topol., 15, 609-676 (2011) · Zbl 1216.22005
[51] U. Schreiber, personal communication, http://www.math.uni-hamburg.de/home/schreiber/Lausanne.pdf; U. Schreiber, personal communication, http://www.math.uni-hamburg.de/home/schreiber/Lausanne.pdf
[52] U. Schreiber, Differential cohomology in a cohesive ∞-topos, published online, http://nlab.mathforge.org/schreiber/files/cohesivedocumentv028.pdf; U. Schreiber, Differential cohomology in a cohesive ∞-topos, published online, http://nlab.mathforge.org/schreiber/files/cohesivedocumentv028.pdf
[53] Schreiber, U.; Waldorf, K., Connections on non-abelian gerbes and their holonomy (2008)
[54] Smith, P. A., Some notions connected with a set of generators, (Proceedings of the International Congress of Mathematicians, vol. 2 (1950)), 436-441 · Zbl 0049.12503
[55] Stolz, S., A conjecture concerning positive Ricci curvature and the Witten genus, Math. Ann., 304, 4, 785-800 (1996) · Zbl 0856.53033
[56] Stolz, S.; Teichner, P., What is an elliptic object?, (Topology, Geometry and Quantum Field Theory. Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., vol. 308 (2004), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 247-343 · Zbl 1107.55004
[57] Tseng, H.-H.; Zhu, C., Integrating Lie algebroids via stacks, Compos. Math., 142, 1, 251-270 (2006) · Zbl 1111.58019
[58] Tuynman, G. M.; Wiegerinck, W. A.J. J., Central extensions and physics, J. Geom. Phys., 4, 2, 207-258 (1987) · Zbl 0649.58014
[59] van Est, W. T., Local and global groups. I, Indag. Math., 24, 391-408 (1962), (Nederl. Akad. Wetensch. Proc. Ser. A 65) · Zbl 0105.02405
[60] van Est, W. T., Local and global groups. II, Indag. Math., 24, 409-425 (1962), (Nederl. Akad. Wetensch. Proc. Ser. A 65) · Zbl 0109.02003
[61] van Est, W. T.; Korthagen, T. J., Non-enlargible (sic) Lie algebras, Indag. Math., 26, 15-31 (1964), (Nederl. Akad. Wetensch. Proc. Ser. A 67) · Zbl 0121.27503
[62] Waldorf, K., Multiplicative bundle gerbes with connection, Differential Geom. Appl., 28, 3, 313-340 (2010) · Zbl 1191.53022
[63] Weinstein, A.; Xu, P., Extensions of symplectic groupoids and quantization, J. Reine Angew. Math., 417, 159-189 (1991) · Zbl 0722.58021
[64] Wockel, C., Smooth extensions and spaces of smooth and holomorphic mappings, J. Geom. Symmetry Phys., 5, 118-126 (2006) · Zbl 1108.58006
[65] Wockel, C., A generalisation of Steenrodʼs approximation theorem, Arch. Math. (Brno), 45, 2, 95-104 (2009) · Zbl 1212.58005
[66] Wockel, C., Principal 2-bundles and their gauge 2-groups, Forum Math., 23, 565-610 (2011) · Zbl 1232.55013
[67] C. Zhu, C. Wockel, Integrating central extensions of Lie algebras via group stacks, in preparation.; C. Zhu, C. Wockel, Integrating central extensions of Lie algebras via group stacks, in preparation. · Zbl 1344.22009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.