×

Modeling of thermo-mechanical fracture behaviors based on cohesive segments formulation. (English) Zbl 1403.74089

Summary: An element-free framework is developed to study the thermo-mechanical fracture behavior of materials based on the cohesive segments model, in which a crack is treated as a combination of a series of cohesive segments and a new cohesive segment is added whenever the cracking criterion is met at a node. Using the moving least-square shape functions as the partition of unity, the discontinuity field is approximated with extra degrees of freedom at the existing nodes. Cohesive constitutive laws are used to model force and heat transfer through cracks. Mechanical and temperature fields are incorporated into a coupled nonlinear system, and the crack problem is iteratively solved. The chosen numerical examples illustrate the efficiency and flexibility of the proposed method.

MSC:

74R10 Brittle fracture
74F05 Thermal effects in solid mechanics
Full Text: DOI

References:

[1] Sagaresan, N., Modeling fracture of concrete with a simplified meshless discrete crack method, KSCE J Civ Eng, 16, 3, 417-425, (2012)
[2] Luccioni, B. M.; Figueroa, M. I.; Danesi, R. F., Thermo-mechanic model for concrete exposed to elevated temperatures, Eng Struct, 25, 729-742, (2003)
[3] Gao, H.; Klein, P., Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds, J Mech Phys Solids, 46, 187-218, (1998) · Zbl 0974.74008
[4] Klein, P.; Foulk, J. W.; Chen, E. P.; Wimmer, S. A.; Gao, H., Physics-based modeling of brittle fracture: cohesive formulations and the application of meshfree methods, Theoret Appl Fract Mech, 37, 99-166, (2001)
[5] Xu, X. P.; Needleman, A., Numerical simulations of crack growth along an interface, Int J Fract, 74, 289-324, (1996)
[6] Elices, M.; Guinea, G. V.; Gomez, J.; Planas, J., The cohesive zone model: advantages, limitations and challenges, Eng Fract Mech, 69, 137-163, (2002)
[7] Li, H.; Chandra, N., Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models, Int J Plast, 19, 849-882, (2003) · Zbl 1090.74670
[8] Remmers, J. J.C.; Borst, De. R.; Needleman, A., A cohesive segments method for the simulation of crack growth, Comput Mech, 31, 69-77, (2003) · Zbl 1038.74679
[9] Sun, Y. Z.; Hu, Y. G.; Liew, K. M., A mesh-free simulation of cracking and failure using the cohesive segments method, Int J Eng Sci, 45, 541-553, (2007) · Zbl 1213.74312
[10] Rabczuk, T.; Belytschko, T., Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int J Numer Meth Eng, 61, 2316-2343, (2004) · Zbl 1075.74703
[11] Zhang, Y. Y.; Gao, L. S., A simplified meshless method for cohesive cracks, Int J Numer Meth Biomed Eng, 26, 728-739, (2010) · Zbl 1351.74076
[12] Fagerstrom, M.; Larsson, R., A thermo-mechanical cohesive zone formulation for ductile fracture, J Mech Phys Solids, 56, 3037-3058, (2008) · Zbl 1183.74245
[13] Ozdemir, I.; Brekelmans, W. A.M.; Geers, M. G.D., A thermo-mechanical cohesive zone model, Comput Mech, 46, 735-745, (2010) · Zbl 1398.74385
[14] Evangelista, F. J.; Roesler, J. R.; Proenca, S. P., Three-dimensional cohesive zone model for fracture of cementitious materials based on the thermodynamics of irreversible processes, Eng Fract Mech, 97, 261-280, (2013)
[15] Hattiangadi, A.; Siegmund, T., A thermomechanical cohesive zone model for bridged delamination cracks, J Mech Phys Solids, 52, 533-566, (2004) · Zbl 1106.74398
[16] Dolbow, J.; Moes, N.; Belytschko, T., An extended finite element method for modeling crack growth with frictional contact, Comput Methods Appl Mech Eng, 190, 6825-6846, (2001) · Zbl 1033.74042
[17] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material modeling, Model Simul Mater Sci Eng, 17, 4, 043001, (2009)
[18] Afshar, A.; Daneshyar, A.; Mohammadi, S., XFEM analysis of fiber bridging in mixed-mode crack propagation in composites, Compos Struct, 125, 314-327, (2015)
[19] Liao, F. Y.; Huang, Z. H., An extended finite element model for modelling localised fracture of reinforced concrete beams in fire, Comput Struct, 152, 11-26, (2015)
[20] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput Methods Appl Mech Eng, 139, 3-47, (1996) · Zbl 0891.73075
[21] Gu, Y.; Chen, W.; Gao, H.; Zhang, C., A meshless singular boundary method for three-dimensional elasticity problems, Int J Numer Methods Eng, 107, 2, 109-126, (2016) · Zbl 1352.74039
[22] Gu, Y.; Chen, W.; Zhang, B., Stress analysis for two-dimensional thin structural problems using the meshless singular boundary method, Eng Anal Bound Elem, 59, 1-7, (2015) · Zbl 1403.74057
[23] Sun, Y. Z.; Liew, K. M., Analyzing interaction between coplanar square cracks using an efficient boundary element-free method, Int J Numer Methods Eng, 91, 11, 1184-1198, (2012)
[24] Nguyen, T. N.; Bui, Q. T.; Zhang, Ch; Truong, T. T., Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method, EABE, 44, 87-97, (2014) · Zbl 1297.74108
[25] Ventura, G.; Xu, J. X.; Belytschko, T., A vector level set method and new discontinuity approximations for crack growth by EFG, Int J Numer Methods Eng, 54, 923-0944, (2002) · Zbl 1034.74053
[26] Wang, H. S., A meshfree variational multiscale method for thermo-mechanical material failure, Theor Appl Fract Mech, 75, 1-7, (2015)
[27] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin meshfree method, Int J Numer Methods Eng, 50, 435-466, (2001) · Zbl 1011.74081
[28] Liu, G. R.; Nguyen-Thoi, T., Smoothed finite element methods, (2010), CRC Press, Taylor and Francis Group New York
[29] Liu, G. R.; Dai, K. Y.; Nguyen-Thoi, T., A smoothed finite element for mechanics problems, Comput Mech, 39, 859-877, (2007) · Zbl 1169.74047
[30] Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam, K. Y., A node based smoothed finite element method (NS-FEM) for upper bound solution to solid mechanics problems, Comput Struct, 87, 14-26, (2009)
[31] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids, J Sound Vib, 320, 1100-1130, (2009)
[32] Nguyen-Thoi, T.; Liu, G. R.; Lam, K. Y.; Zhang, G. Y., A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements, Int J Numer Methods Eng, 78, 324-353, (2009) · Zbl 1183.74299
[33] Liu, G. R.; Nourbakhshnia, N.; Zhang, Y. W., A novel singular ES-FEM method for simulating singular stress fields near the crack tips for linear fracture problems, Eng Fract Mech, 78, 863-876, (2011)
[34] Nguyen-Xuan, H.; Liu, G. R.; Nourbakhshnia, N.; Chen, L., A novel singular ES-FEM for crack growth simulation, Eng Fract Mech, 84, 41-66, (2012)
[35] Nourbakhshnia, N.; Liu, G. R., A quasi-static crack growth simulation based on the singular ES-FEM, Int J Numer Methods Eng, 88, 473-492, (2011) · Zbl 1242.74144
[36] Xu, X. P.; Needleman, A., Void nucleation by inclusions debonding in a crystal matrix, Model Simul Mater Sci Eng, 1, 111-132, (1993)
[37] Bosch van den, M. J.; PJG, Schreurs; MGD, Geers, An improved description of the exponential xu and needleman cohesive zone law for mixed-mode decohesion, Eng Fract Mech, 73, 1220-1234, (2006)
[38] Ren, J.; Liew, K. M.; Meguid, S. A., Modelling and simulation of the superelastic behaviour of shape memory alloys using the element-free Galerkin method, Int J Mech Sci, 44, 2393-2413, (2002) · Zbl 1113.74432
[39] Babuska, I.; Melenk, J., The partition of unity, Int J Numer Methods Eng, 40, 727-758, (1997) · Zbl 0949.65117
[40] Sun, Y. Z.; Liew, K. M., The buckling of single-walled carbon nanotubes upon bending: the higher order gradient continuum and mesh-free method, Comput Methods Appl Mech Eng, 197, 3001-3013, (2008) · Zbl 1194.74083
[41] Tian, Y.; Zhang, C. L.; Sun, Y. Z., The application of mesh-free method in the numerical simulation of beams with the size effect, Math Probl Eng, 12, 155-175, (2014)
[42] Ren, J.; Liew, K. M., Mesh-free method revisited: two new approaches for the treatment of essential boundary conditions, Int J Comput Eng Sci, 3, 219-233, (2002)
[43] Liew, K. M.; Peng, L. X.; Kitipornchai, S., Buckling of folded plate structures subjected to partial in-plane edge loads by the FSDT meshfree Galerkin method, Int J Numer Methods Eng, 65, 1495-1526, (2006) · Zbl 1115.74059
[44] Duflot, M., The extended finite element method in thermoelastic fracture mechanics, Int J Numer Methods Eng, 74, 827-847, (2008) · Zbl 1195.74170
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.