×

A mesh-free simulation of cracking and failure using the cohesive segments method. (English) Zbl 1213.74312

Summary: An approach to the simulation of the cracking and failure of structures is presented that combines the mesh-free method with a cohesive segments model, in which cracking and failure are regarded as the appearance and combination of a series of cohesive segments. This method removes the need for explicit crack representation, and thus overcomes some of the limitations of conventional modeling methods. The entire displacement field is decomposed into a regular continuous field and various discontinuous fields that correspond to the cohesive segments. Using moving least-squares (MLS) shape functions as the partition of unity, the discontinuity field is approximated with extra degrees of freedom at the existing nodes. An iteratively solving scheme between the two fields is presented, and the chosen numerical examples show that the method is both flexible and efficient.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74R99 Fracture and damage
Full Text: DOI

References:

[1] Gao, H.; Klein, P., Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds, J. Mech. Phys. Solids, 46, 187-218 (1998) · Zbl 0974.74008
[2] Klein, P.; Foulk, J. W.; Chen, E. P.; Wimmer, S. A.; Gao, H., Physics-based modeling of brittle fracture: cohesive formulations and the application of meshfree methods, Theor. Appl. Fract. Mech., 37, 99-166 (2001)
[3] Needleman, A., A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 54, 525-531 (1987) · Zbl 0626.73010
[4] Xu, X. P.; Needleman, A., Numerical simulations of crack growth along an interface, Int. J. Fract., 74, 289-324 (1996)
[5] Xu, X. P.; Needleman, A., Numerical simulations of fast crack growth in brittle solids, J. Mech. Phys. Solids, 42, 1397-1434 (1994) · Zbl 0825.73579
[6] Ortiz, M.; Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. Numer. Methods Eng., 44, 1267-1282 (1999) · Zbl 0932.74067
[7] Roy, R. A.; Dodds, R. H., Simulation of ductile crack growth in thin aluminum panels using 3-D surface cohesive elements, Int. J. Fract., 110, 21-45 (2001)
[8] Elices, M.; Guinea, G. V.; Gomez, J.; Planas, J., The cohesive zone model: advantages, limitations and challenges, Eng. Fract. Mech., 69, 137-163 (2002)
[9] Li, H.; Chandra, N., Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models, Int. J. Plast., 19, 849-882 (2003) · Zbl 1090.74670
[10] Hattiangadi, A.; Siegmund, T., A thermomechanical cohesive zone model for bridged delamination cracks, J. Mech Phys. Solids, 52, 533-566 (2004) · Zbl 1106.74398
[11] Klein, P.; Gao, H., Crack nucleation and growth as strain localization in a virtual-bond continuum, Eng. Fract. Mech., 61, 21-48 (1998)
[12] Remmers, J. J.C.; De Borst, R.; Needleman, A., A cohesive segments method for the simulation of crack growth, Comput. Mech., 31, 69-77 (2003) · Zbl 1038.74679
[13] De Borst, R.; Sluys, L. J.; Mulhaus, H. B.; Pamin, J., Fundamental issues in finite element analyses of localization and deformation, Eng. Comp., 10, 99-121 (1993)
[14] Babuska, I.; Melenk, J. M., The partition of unity, Int. J. Numer. Methods Eng., 40, 727-758 (1997) · Zbl 0949.65117
[15] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., 46, 131-150 (1999) · Zbl 0955.74066
[16] Dolbow, J.; Moes, N.; Belytschko, T., An extended finite element method for modeling crack growth with frictional contact, Comput. Methods Appl. Mech. Eng., 190, 6825-6846 (2001) · Zbl 1033.74042
[17] Ventura, G.; Xu, J. X.; Belytschko, T., A vector level set method and new discontinuity approximations for crack growth by EFG, Int. J. Numer. Methods Eng., 54, 923-944 (2002) · Zbl 1034.74053
[18] Rabczuk, T.; Belytschko, T., Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. Numer. Methods Eng., 61, 2316-2343 (2004) · Zbl 1075.74703
[19] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 3-47 (1996) · Zbl 0891.73075
[20] Liew, K. M.; Ng, T. Y.; Wu, Y. C., Meshfree method for large deformation analysis – a reproducing kernel particle approach, Eng. Struct., 24, 543-551 (2002)
[21] Ren, J.; Liew, K. M.; Meguid, S. A., Modelling and simulation of the superelastic behaviour of shape memory alloys using the element-free Galerkin method, Int. J. Mech. Sci., 44, 2393-2413 (2002) · Zbl 1113.74432
[22] Liew, K. M.; Huang, Y. Q.; Reddy, J. N., Moving least squares differential quadrature method and its application to the analysis of shear deformable plates, Int. J. Numer. Methods Eng., 56, 2331-2351 (2003) · Zbl 1062.74658
[23] Liew, K. M.; Ren, J.; Kitipornchai, S., Analysis of the pseudoelastic behavior of a SMA beam by the element-free Galerkin method, Eng. Anal. Boun. Elem., 28, 497-507 (2004) · Zbl 1130.74490
[24] Liew, K. M.; Peng, L. X.; Kitipornchai, S., Buckling analysis of corrugated plates using a mesh-free Galerkin method based on the first-order shear deformation theory, Comput. Mech., 38, 61-75 (2006) · Zbl 1138.74333
[25] Mergheim, J.; Kuhl, E.; Steinmann, P., A finite element method for the computational modeling of cohesive cracks, Int. J. Numer. Methods Eng., 63, 276-289 (2005) · Zbl 1118.74349
[26] Wells, G. N.; Sluys, L. J., A new method for modelling cohesive cracks using finite elements, Int. J. Numer. Methods Eng., 50, 2667-2682 (2001) · Zbl 1013.74074
[27] Chen, J. S.; Pan, C.; Wu, C. T.; Liu, W. K., Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. Methods Appl. Mech. Eng., 139, 195-227 (1996) · Zbl 0918.73330
[28] Ren, J.; Liew, K. M., Mesh-free method revisited: two new approaches for the treatment of essential boundary conditions, Int. J. Comput. Eng. Sci., 3, 219-233 (2002)
[29] Liew, K. M.; Peng, L. X.; Kitipornchai, S., Buckling of folded plate structures subjected to partial in-plane edge loads by the FSDT meshfree Galerkin method, Int. J. Numer. Methods Eng., 65, 1495-1526 (2006) · Zbl 1115.74059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.