×

Holographic excited states in AdS black holes. (English) Zbl 1415.83013

Summary: We have recently presented a geometry dual to a Schwinger-Keldysh closed time contour, with two equal \({\beta}/2\) length Euclidean sections, which can be thought of as dual to the Thermo Field Dynamics formulation of the boundary CFT. In this work we study non-perturbative holographic excitations of the thermal vacuum by turning on asymptotic Euclidean sources. In the large-\(N\) approximation the states are found to be thermal coherent states and we manage to compute its eigenvalues. We pay special attention to the high temperature regime where the manifold is built from pieces of Euclidean and Lorentzian black hole geometries. In this case, the real time segments of the Schwinger-Keldysh contour get connected by an Einstein-Rosen wormhole through the bulk, which we identify as the exterior of a single maximally extended black hole. The Thermal-AdS case is also considered but, the Lorentzian regions become disconnected, its results mostly follows from the zero temperature case.

MSC:

83C57 Black holes
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E05 Geometrodynamics and the holographic principle
81T28 Thermal quantum field theory

References:

[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[4] D. Marolf, States and boundary terms: subtleties of Lorentzian AdS/CFT, JHEP05 (2005) 042 [hep-th/0412032] [INSPIRE]. · doi:10.1088/1126-6708/2005/05/042
[5] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett.101 (2008) 081601 [arXiv:0805.0150] [INSPIRE]. · Zbl 1228.81244 · doi:10.1103/PhysRevLett.101.081601
[6] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP05 (2009) 085 [arXiv:0812.2909] [INSPIRE]. · doi:10.1088/1126-6708/2009/05/085
[7] M. Botta-Cantcheff, P. Martínez and G.A. Silva, On excited states in real-time AdS/CFT, JHEP02 (2016) 171 [arXiv:1512.07850] [INSPIRE]. · Zbl 1388.83188
[8] A. Christodoulou and K. Skenderis, Holographic construction of excited CFT states, JHEP04 (2016) 096 [arXiv:1602.02039] [INSPIRE]. · Zbl 1388.83208
[9] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
[10] M. Botta-Cantcheff, P.J. Martínez and G.A. Silva, Interacting fields in real-time AdS/CFT, JHEP03 (2017) 148 [arXiv:1703.02384] [INSPIRE]. · Zbl 1377.81157
[11] A. Lewkowycz and O. Parrikar, The holographic shape of entanglement and Einstein’s equations, JHEP05 (2018) 147 [arXiv:1802.10103] [INSPIRE]. · Zbl 1391.81169 · doi:10.1007/JHEP05(2018)147
[12] A. May and E. Hijano, The holographic entropy zoo, JHEP10 (2018) 036 [arXiv:1806.06077] [INSPIRE]. · Zbl 1402.81228 · doi:10.1007/JHEP10(2018)036
[13] D. Marolf, Microcanonical path integrals and the holography of small black hole interiors, JHEP09 (2018) 114 [arXiv:1808.00394] [INSPIRE]. · Zbl 1398.81218 · doi:10.1007/JHEP09(2018)114
[14] M. Van Raamsdonk, Building up spacetime with quantum entanglement II: It from BC-bit, arXiv:1809.01197 [INSPIRE]. · Zbl 1200.83052
[15] J. Sonner and B. Withers, Linear gravity from conformal symmetry, arXiv:1810.12923 [INSPIRE]. · Zbl 1476.83141
[16] A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a New York time story, JHEP03 (2019) 044 [arXiv:1811.03097] [INSPIRE]. · Zbl 1406.81044 · doi:10.1007/JHEP03(2019)044
[17] M. Botta-Cantcheff, P.J. Martínez and G.A. Silva, The gravity dual of real-time CFT at finite temperature, JHEP11 (2018) 129 [arXiv:1808.10306] [INSPIRE]. · Zbl 1404.83039
[18] J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys.2 (1961) 407 [INSPIRE]. · Zbl 0098.43503 · doi:10.1063/1.1703727
[19] L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz.47 (1964) 1515 [INSPIRE].
[20] H. Umezawa, Advanced field theory: Micro, macro, and thermal physics, AIP, New York U.S.A. (1993).
[21] Y. Takahashi and H. Umezawa, Thermo field dynamics, Int. J. Mod. Phys.B 10 (1996) 1755 [INSPIRE]. · Zbl 1229.81284 · doi:10.1142/S0217979296000817
[22] J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE]. · doi:10.1088/1126-6708/2003/04/021
[23] B.C. van Rees, Real-time gauge/gravity duality and ingoing boundary conditions, Nucl. Phys. Proc. Suppl.192-193 (2009) 193 [arXiv:0902.4010] [INSPIRE].
[24] A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form, Phys. Lett.B 789 (2019) 71 [arXiv:1806.10144] [INSPIRE]. · Zbl 1406.81044 · doi:10.1016/j.physletb.2018.10.071
[25] J. Oz-Vogt, A. Mann and M. Revzen, Thermal coherent states and thermal squeezed states, J. Mod. Opt.38 (1991) 2339. · Zbl 0942.81562 · doi:10.1080/09500349114552501
[26] S. Fubini, A.J. Hanson and R. Jackiw, New approach to field theory, Phys. Rev.D 7 (1973) 1732.
[27] T. Faulkner et al., Nonlinear gravity from entanglement in conformal field theories, JHEP08 (2017) 057 [arXiv:1705.03026] [INSPIRE]. · Zbl 1381.83099 · doi:10.1007/JHEP08(2017)057
[28] D. Marolf et al., From Euclidean sources to lorentzian spacetimes in holographic conformal field theories, JHEP06 (2018) 077 [arXiv:1709.10101] [INSPIRE]. · Zbl 1395.81235 · doi:10.1007/JHEP06(2018)077
[29] M. Botta-Cantcheff and P.J. Martínez, Which quantum states are dual to classical spacetimes?, arXiv:1703.03483 [INSPIRE].
[30] B. Mosk, Metric perturbations of extremal surfaces, Class. Quant. Grav.35 (2018) 045013 [arXiv:1710.01316] [INSPIRE]. · Zbl 1386.83016 · doi:10.1088/1361-6382/aaa4e9
[31] J.B. Hartle and S.W. Hawking, Wave function of the universe, Phys. Rev.D 28 (1983) 2960. · Zbl 1370.83118
[32] A.L. Fitzpatrick and J. Kaplan, Scattering states in AdS/CFT, arXiv:1104.2597 [INSPIRE].
[33] H. Matsumoto et al., Thermo field dynamics in interaction representation, Prog. Theor. Phys.70 (183) 599.
[34] T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP05 (2013) 014 [arXiv:1303.1080] [INSPIRE]. · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[35] K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence in the black hole interior, Phys. Rev.D 93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].
[36] A. Maloney, Geometric microstates for the three dimensional black hole?, arXiv:1508.04079 [INSPIRE].
[37] M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev.D 48 (1993) 1506 [Erratum ibid.D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
[38] W. Israel, Thermo field dynamics of black holes, Phys. Lett.A 57 (1976) 107 [INSPIRE]. · doi:10.1016/0375-9601(76)90178-X
[39] C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP03 (2003) 046 [hep-th/0212072] [INSPIRE]. · doi:10.1088/1126-6708/2003/03/046
[40] E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [INSPIRE].
[41] D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP09 (2002) 042 [hep-th/0205051] [INSPIRE]. · doi:10.1088/1126-6708/2002/09/042
[42] D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci.57 (2007) 95 [arXiv:0704.0240] [INSPIRE]. · doi:10.1146/annurev.nucl.57.090506.123120
[43] D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett.88 (2002) 151301 [hep-th/0112055] [INSPIRE]. · doi:10.1103/PhysRevLett.88.151301
[44] W.G. Unruh, Notes on black hole evaporation, Phys. Rev.D 14 (1976) 870 [INSPIRE].
[45] P. Glorioso, M. Crossley and H. Liu, A prescription for holographic Schwinger-Keldysh contour in non-equilibrium systems, arXiv:1812.08785 [INSPIRE].
[46] D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFTd/AdSd+1correspondence, Nucl. Phys.B 546 (1999) 96 [hep-th/9804058] [INSPIRE]. · Zbl 0944.81041 · doi:10.1016/S0550-3213(99)00053-X
[47] D. Birmingham, I. Sachs and S.N. Solodukhin, Relaxation in conformal field theory, Hawking-Page transition and quasinormal normal modes, Phys. Rev.D 67 (2003) 104026 [hep-th/0212308] [INSPIRE].
[48] A. Einstein and N. Rosen, The particle problem in the general theory of relativity, Phys. Rev.48 (1935) 73 [INSPIRE]. · JFM 61.1454.04 · doi:10.1103/PhysRev.48.73
[49] M. Kenmoku, M. Kuwata and K. Shigemoto, Normal modes and no zero mode theorem of scalar fields in BTZ black hole spacetime, Class. Quant. Grav.25 (2008) 145016 [arXiv:0801.2044] [INSPIRE]. · Zbl 1180.83054 · doi:10.1088/0264-9381/25/14/145016
[50] S. Hemming and E. Keski-Vakkuri, Hawking radiation from AdS black holes, Phys. Rev.D 64 (2001) 044006 [gr-qc/0005115] [INSPIRE]. · Zbl 0985.81100
[51] D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
[52] W.-M. Zhang, D.H. Feng and R. Gilmore, Coherent states: theory and some applications, Rev. Mod. Phys.62 (1990) 867 [INSPIRE]. · doi:10.1103/RevModPhys.62.867
[53] A. Belin, N. Iqbal and S.F. Lokhande, Bulk entanglement entropy in perturbative excited states, SciPost Phys.5 (2018) 024 [arXiv:1805.08782] [INSPIRE]. · doi:10.21468/SciPostPhys.5.3.024
[54] S.M. Carroll, Spacetime and geometry: an introduction to general relativity, Addison-Wesley, San Francisco, U.S.A. (2004). · Zbl 1131.83001
[55] M.C.B. Abdalla, A.L. Gadelha and D.L. Nedel, Closed string thermal torus from thermofield dynamics, Phys. Lett.B 613 (2005) 213 [hep-th/0410068]. · Zbl 1247.81333 · doi:10.1016/j.physletb.2005.03.048
[56] M. Botta Cantcheff, D-branes as coherent states in the open string channel, Eur. Phys. J.C 55 (2008) 517 [arXiv:0710.3186] [INSPIRE]. · Zbl 1189.81174 · doi:10.1140/epjc/s10052-008-0603-9
[57] J.J. Bisognano and E.H. Wichmann, On the duality condition for a hermitian scalar field, J. Math. Phys.16 (1975) 985 [INSPIRE]. · Zbl 0316.46062 · doi:10.1063/1.522605
[58] J.J. Bisognano and E.H. Wichmann, On the duality condition for quantum fields, J. Math. Phys.17 (1976) 303 [INSPIRE]. · doi:10.1063/1.522898
[59] R.E. Arias, M. Botta Cantcheff and G.A. Silva, Lorentzian AdS, wormholes and holography, Phys. Rev.D 83 (2011) 066015 [arXiv:1012.4478] [INSPIRE].
[60] P. Gao, D.L. Jafferis and A. Wall, Traversable wormholes via a double trace deformation, JHEP12 (2017) 151 [arXiv:1608.05687] [INSPIRE]. · Zbl 1383.83054 · doi:10.1007/JHEP12(2017)151
[61] M. Botta Cantcheff, A.L. Gadelha, D.F.Z. Marchioro and D.L. Nedel, Entanglement from dissipation and Holographic Interpretation, Eur. Phys. J.C 78 (2018) 105 [arXiv:1702.02069] [INSPIRE]. · doi:10.1140/epjc/s10052-018-5545-2
[62] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE]. · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.