×

Closed string thermal torus from thermo field dynamics. (English) Zbl 1247.81333

Summary: A topological interpretation for the string thermal vacuum in the thermo field dynamics (TFD) approach is given. As a consequence, the relationship between the imaginary time and TFD formalisms is achieved when both are used to study closed strings at finite temperature. The TFD approach starts by duplicating the system’s degrees of freedom, defining an auxiliary (tilde) string. In order to lead the system to finite temperature a Bogoliubov transformation is implemented. We show that the effect of this transformation is to glue together the string and the tilde string to obtain a torus. The thermal vacuum appears as the boundary state for this identification. Also, from the thermal state condition, a Kubo-Martin-Schwinger condition for the torus topology is derived.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
82B05 Classical equilibrium statistical mechanics (general)

References:

[1] Matsubara, T., Prog. Theor. Phys., 14, 351 (1955) · Zbl 0067.18802
[2] Fetter, A. L.; Walecka, J. D., Quantum Theory of Many-Particle Systems (1971), McGraw-Hill: McGraw-Hill New York
[3] Das, A., Finite Temperature Field Theory (1977), World Scientific: World Scientific Singapore
[4] Castellani, L.; D’Auria, R.; Fré, P., Supergravity and Superstrings—A Geometric Perspective, vol. 3 (1991), World Scientific: World Scientific Singapore · Zbl 0753.53047
[5] Haag, R., Local Quantum Physics: Fields, Particles, Algebras (1992), Springer-Verlag: Springer-Verlag New York · Zbl 0777.46037
[6] Emch, G. G., Algebraic Methods in Statistical and Quantum Field Theory (1972), Wiley: Wiley New York · Zbl 0235.46085
[7] Takahashi, Y.; Umezawa, H., Coll. Phenom.. Coll. Phenom., Int. J. Mod. Phys., 10, 1755 (1996), reprinted in
[8] Umezawa, H.; Matsumoto, H.; Tachiki, M., Thermofield Dynamics and Condensed States (1982), North-Holland: North-Holland Amsterdam
[9] Mann, A.; Revzen, M.; Umezawa, H.; Yamanaka, Y., Phys. Lett. A, 140, 475 (1989)
[10] Umezawa, H., Advanced Field Theory: Micro, Macro and Thermal Physics (1993), AIP: AIP New York
[11] Santana, A. E.; Khanna, F. C., Phys. Lett. A, 203, 68 (1995) · Zbl 1020.81934
[12] Santana, A. E.; Khanna, F. C.; Chu, H.; Chang, C., Ann. Phys., 249, 481 (1996) · Zbl 0893.22013
[13] Kobes, R., Phys. Rev. D, 42, 562 (1990)
[14] Le Bellac, M., Thermal Field Theory (1996), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0893.00008
[15] Nedel, D. L.; Abdalla, M. C.B.; Gadelha, A. L., Phys. Lett. B, 598, 121 (2004)
[16] Abdalla, M. C.; Gadelha, A. L.; Nedel, D. L., Phys. Lett. A, 344, 123 (2005)
[17] Abdalla, M. C.; Gadelha, A. L.; Nedel, D. L., in: Proceedings of Fourth International Winter Conference on Mathematical Methods in Physics, PoS(WC2004)032
[18] Fujisaki, H.; Nakagawa, K., Europhys. Lett., 35, 493 (1996)
[19] Nakagawa, K.; Fujisaki, H., Europhys. Lett., 28, 1 (1994)
[20] Leblanc, Y., Phys. Rev. D, 38, 3078 (1988)
[21] Fujisaki, H.; Sano, S.; Nakagawa, K., Nuovo Cimento A, 110, 161 (1997)
[22] Leblanc, Y., Phys. Rev. D, 36, 1780 (1987)
[23] Vancea, I. V., Phys. Lett. B, 487, 175 (2000) · Zbl 1050.81668
[24] Abdalla, M. C.B.; Gadelha, A. L.; Vancea, I. V., Phys. Rev. D, 64, 086005 (2001)
[25] Abdalla, M. C.B.; Graca, E. L.; Vancea, I. V., Phys. Lett. B, 536, 144 (2002)
[26] Abdalla, M. C.B.; Gadelha, A. L.; Vancea, I. V., Phys. Rev. D, 66, 065005 (2002)
[27] Abdalla, M. C.B.; Gadelha, A. L.; Vancea, I. V., Int. J. Mod. Phys. A, 18, 2109 (2003) · Zbl 1047.81059
[28] Abdalla, M. C.B.; Gadelha, A. L.; Vancea, I. V.
[29] Santana, A. E.; Neto, A. M.; Vianna, J. D.M.; Khanna, F. C., Physica A, 280, 405 (2000)
[30] da Silva, J. C.; Khanna, F. C.; Neto, A. M.; Santana, A. E., Phys. Rev. A, 66, 052101 (2002)
[31] Ojima, I., Ann. Phys., 137, 1 (1981)
[32] Laflamme, R., Nucl. Phys. B, 324, 233 (1989)
[33] Alvarez-Gaumé, L.; Gomez, C.; Moore, G. W.; Vafa, C., Nucl. Phys. B, 303, 455 (1988)
[34] Mathur, S. D.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.