×

Noncommutative gauge theories on \( \mathbb{R}_{\theta}^2 \) as matrix models. (English) Zbl 1342.81309

Summary: We study a class of noncommutative gauge theory models on 2-dimensional Moyal space from the viewpoint of matrix models and explore some related properties. Expanding the action around symmetric vacua generates non local matrix models with polynomial interaction terms. For a particular vacuum, we can invert the kinetic operator which is related to a Jacobi operator. The resulting propagator can be expressed in terms of Chebyschev polynomials of second kind. We show that non vanishing correlations exist at large separations. General considerations on the kinetic operators stemming from the other class of symmetric vacua, indicate that only one class of symmetric vacua should lead to fast decaying propagators. The quantum stability of the vacuum is briefly discussed.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T75 Noncommutative geometry methods in quantum field theory

References:

[1] A. Connes, Noncommutative geometry, Academic Press Inc., San Diego, U.S.A. (1994), available at http://www.alainconnes.org/downloads.html. · Zbl 0818.46076
[2] A. Connes and M. Marcolli, A walk in the noncommutative garden, available online (2006). · Zbl 1145.14005
[3] G. Landi, An introduction to noncommutative spaces and their geometries, Lectures notes in physics, Springer-Verlag, Germany (1997). · Zbl 0909.46060
[4] J. M. Gracia-Bondía, J. C. Várilly and H. Figueroa, Elements of noncommutative geometry, Birkhaüser Advanced Texts, Birkhaüser, Switzerland (2001). · Zbl 0958.46039
[5] S. Doplicher, K. Fredenhagen and J. Roberts, Space-time quantization induced by classical gravity, Phys. Lett.B 331 (1994) 39 [INSPIRE].
[6] E. Witten, Noncommutative geometry and string field theory, Nucl. Phys.B 268 (1986) 253 [INSPIRE]. · doi:10.1016/0550-3213(86)90155-0
[7] J. Madore, The commutative limit of a matrix geometry, J. Math. Phys.32 (1991) 332 [INSPIRE]. · Zbl 0727.53084 · doi:10.1063/1.529418
[8] H. Grosse and J. Madore, A noncommutative version of the Schwinger model, Phys. Lett.B 283 (1992) 218 [INSPIRE].
[9] A. Balachandran, S. Kurkcuoglu and S. Vaidya, Lectures on fuzzy and fuzzy SUSY physics, hep-th/0511114 [INSPIRE]. · Zbl 1132.81001
[10] V. Schomerus, D-branes and deformation quantization, JHEP06 (1999) 030 [hep-th/9903205] [INSPIRE]. · Zbl 0961.81066 · doi:10.1088/1126-6708/1999/06/030
[11] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP09 (1999) 032 [hep-th/9908142] [INSPIRE]. · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[12] L. Susskind, The quantum Hall fluid and noncommutative Chern-Simons theory, hep-th/0101029 [INSPIRE].
[13] F. Chandelier, Y. Georgelin, T. Masson and J.-C. Wallet, Quantum Hall conductivity in a Landau type model with a realistic geometry, Ann. Phys.305 (2003) 60. · Zbl 1025.81053 · doi:10.1016/S0003-4916(03)00059-9
[14] F. Chandelier, Y. Georgelin, T. Masson and J.-C. Wallet, Quantum Hall conductivity in a Landau type model with a realistic geometry II, Ann. Phys.314 (2004) 476. · Zbl 1255.81249 · doi:10.1016/j.aop.2004.07.008
[15] M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys.73 (2001) 977 [hep-th/0106048] [INSPIRE]. · Zbl 1205.81126 · doi:10.1103/RevModPhys.73.977
[16] R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept.378 (2003) 207 [hep-th/0109162] [INSPIRE]. · Zbl 1042.81581 · doi:10.1016/S0370-1573(03)00059-0
[17] J.-C. Wallet, Noncommutative induced gauge theories on Moyal spaces, J. Phys. Conf. Ser.103 (2008) 012007 [arXiv:0708.2471] [INSPIRE]. · doi:10.1088/1742-6596/103/1/012007
[18] S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP02 (2000) 020 [hep-th/9912072] [INSPIRE]. · Zbl 0959.81108 · doi:10.1088/1126-6708/2000/02/020
[19] I. Chepelev and R. Roiban, Renormalization of quantum field theories on noncommutative Rd. 1. Scalars, JHEP05 (2000) 037 [hep-th/9911098] [INSPIRE]. · Zbl 0990.81756 · doi:10.1088/1126-6708/2000/05/037
[20] H. Grosse and R. Wulkenhaar, Power counting theorem for nonlocal matrix models and renormalization, Commun. Math. Phys.254 (2005) 91 [hep-th/0305066] [INSPIRE]. · Zbl 1079.81049 · doi:10.1007/s00220-004-1238-9
[21] H. Grosse and R. Wulkenhaar, Renormalization of ϕ4theory on noncommutative R2in the matrix base, JHEP12 (2003) 019 [hep-th/0307017] [INSPIRE]. · doi:10.1088/1126-6708/2003/12/019
[22] H. Grosse and R. Wulkenhaar, Renormalization of ϕ4theory on noncommutative R4in the matrix base, Commun. Math. Phys.256 (2005) 305 [hep-th/0401128] [INSPIRE]. · Zbl 1075.82005 · doi:10.1007/s00220-004-1285-2
[23] H. Grosse and H. Steinacker, A nontrivial solvable noncommutative ϕ3model in 4 dimensions, JHEP08 (2006) 008 [hep-th/0603052] [INSPIRE]. · doi:10.1088/1126-6708/2006/08/008
[24] H. Grosse and H. Steinacker, Renormalization of the noncommutative ϕ3model through the Kontsevich model, Nucl. Phys.B 746 (2006) 202 [hep-th/0512203] [INSPIRE]. · Zbl 1178.81190 · doi:10.1016/j.nuclphysb.2006.04.007
[25] A. de Goursac and J.-C. Wallet, Symmetries of noncommutative scalar field theory, J. Phys.44 (2011) 055401 [arXiv:0911.2645] [INSPIRE]. · Zbl 1208.81192
[26] A. de Goursac, A. Tanasa and J.-C. Wallet, Vacuum configurations for renormalizable non-commutative scalar models, Eur. Phys. J.C 53 (2008) 459 [arXiv:0709.3950] [INSPIRE]. · Zbl 1189.81213 · doi:10.1140/epjc/s10052-007-0465-6
[27] E. Langmann, R. Szabo and K. Zarembo, Exact solution of quantum field theory on noncommutative phase spaces, JHEP01 (2004) 017 [hep-th/0308043] [INSPIRE]. · Zbl 1243.81205 · doi:10.1088/1126-6708/2004/01/017
[28] E. Langmann, R. Szabo and K. Zarembo, Exact solution of noncommutative field theory in background magnetic fields, Phys. Lett.B 569 (2003) 95 [hep-th/0303082] [INSPIRE]. · Zbl 1059.81608
[29] M. Burić and M. Wohlgenannt, Geometry of the Grosse-Wulkenhaar Model, JHEP03 (2010) 053 [arXiv:0902.3408] [INSPIRE]. · Zbl 1271.81085
[30] F. Vignes-Tourneret, Renormalization of the orientable non-commutative Gross-Neveu model, Ann. H. Poincaré8 (2007) 427. · Zbl 1133.81058 · doi:10.1007/s00023-006-0312-6
[31] A. Lakhoua, F. Vignes-Tourneret and J.-C. Wallet, One-loop β-functions for the orientable non-commutative Gross-Neveu model, Eur. Phys. J.C 52 (2007) 735 [hep-th/0701170] [INSPIRE]. · Zbl 1189.81219 · doi:10.1140/epjc/s10052-007-0424-2
[32] H. Grosse and R. Wulkenhaar, The β-function in duality covariant noncommutative ϕ4theory, Eur. Phys. J.C 35 (2004) 277 [hep-th/0402093] [INSPIRE]. · Zbl 1191.81207
[33] M. Disertori, R. Gurau, J. Magnen and V. Rivasseau, Vanishing of β-function of non commutative ϕ4(4) theory to all orders, Phys. Lett.B 649 (2007) 95 [hep-th/0612251] [INSPIRE]. · Zbl 1248.81253
[34] E. Langmann and R.J. Szabo, Duality in scalar field theory on noncommutative phase spaces, Phys. Lett.B 533 (2002) 168 [hep-th/0202039] [INSPIRE]. · Zbl 0994.81116
[35] H. Grosse and R. Wulkenhaar, Self-dual noncommutative ϕ4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory, arXiv:1205.0465 [INSPIRE]. · Zbl 1305.81129
[36] P. Vitale and J.-C. Wallet, Noncommutative field theories on \(R_{\lambda}^3 \): toward UV/IR mixing freedom, JHEP04 (2013) 115 [arXiv:1212.5131] [INSPIRE]. · Zbl 1342.81641 · doi:10.1007/JHEP04(2013)115
[37] S. Galluccio, F. Lizzi and P. Vitale, Translation invariance, commutation relations and ultraviolet/infrared mixing, JHEP09 (2009) 054 [arXiv:0907.3640] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/054
[38] S. Galluccio, F. Lizzi and P. Vitale, Twisted noncommutative field theory with the Wick-Voros and Moyal products, Phys. Rev.D 78 (2008) 085007 [arXiv:0810.2095].
[39] A. Matusis, L. Susskind and N. Toumbas, The IR/UV connection in the noncommutative gauge theories, JHEP12 (2000) 002 [hep-th/0002075] [INSPIRE]. · Zbl 0990.81549 · doi:10.1088/1126-6708/2000/12/002
[40] M. Hayakawa, Perturbative analysis on infrared aspects of noncommutative QED on R4, Phys. Lett.B 478 (2000) 394 [hep-th/9912094] [INSPIRE]. · Zbl 1050.81719
[41] D. Blaschke, S. Hohenegger and M. Schweda, Divergences in non-commutative gauge theories with the Slavnov term, JHEP11 (2005) 041 [hep-th/0510100] [INSPIRE]. · doi:10.1088/1126-6708/2005/11/041
[42] D.N. Blaschke, H. Grosse and M. Schweda, Non-commutative U(1) gauge theory on R4with oscillator term and BRST symmetry, Europhys. Lett.79 (2007) 61002. · doi:10.1209/0295-5075/79/61002
[43] M. Dubois-Violette, R. Kerner and J. Madore, Noncommutative differential geometry and new models of gauge theory, J. Math. Phys.31 (1990) 323 [INSPIRE]. · Zbl 0704.53082 · doi:10.1063/1.528917
[44] A. de Goursac, J.-C. Wallet and R. Wulkenhaar, Noncommutative induced gauge theory, Eur. Phys. J.C 51 (2007) 977 [hep-th/0703075] [INSPIRE]. · Zbl 1189.81215 · doi:10.1140/epjc/s10052-007-0335-2
[45] H. Grosse and M. Wohlgenannt, Induced gauge theory on a noncommutative space, Eur. Phys. J.C 52 (2007) 435 [hep-th/0703169] [INSPIRE]. · Zbl 1189.81217 · doi:10.1140/epjc/s10052-007-0369-5
[46] J.-C. Wallet, Derivations of the Moyal algebra and noncommutative gauge theories, SIGMA5 (2009) 013 [arXiv:0811.3850] [INSPIRE]. · Zbl 1160.81470
[47] E. Cagnache, T. Masson and J.-C. Wallet, Noncommutative Yang-Mills-Higgs actions from derivation-based differential calculus, J. Noncommut. Geom.5 (2011) 39 [arXiv:0804.3061] [INSPIRE]. · Zbl 1226.81279 · doi:10.4171/JNCG/69
[48] A. de Goursac, T. Masson and J.-C. Wallet, Noncommutative epsilon-graded connections, J. Noncommut. Geom.6 (2012) 343 [arXiv:0811.3567] [INSPIRE]. · Zbl 1275.58003 · doi:10.4171/JNCG/94
[49] H. Grosse and R. Wulkenhaar, 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory, J. Geom. Phys.62 (2012) 1583. · Zbl 1243.58005 · doi:10.1016/j.geomphys.2012.03.005
[50] J.-C. Wallet, Connes distance by examples: homothetic spectral metric spaces, Rev. Math. Phys.24 (2012) 1250027 [arXiv:1112.3285] [INSPIRE]. · Zbl 1256.46040 · doi:10.1142/S0129055X12500274
[51] E. Cagnache, E. Jolibois and J.-C. Wallet, Spectral distances: results for Moyal plane and noncommutative torus, SIGMA6 (2010) 026 [arXiv:0912.4185] [INSPIRE]. · Zbl 1190.58010
[52] E. Cagnache, F. D’Andrea, P. Martinetti and J.-C. Wallet, The spectral distance on the Moyal plane, J. Geom. Phys.61 (2011) 1881 [arXiv:0912.0906] [INSPIRE]. · Zbl 1226.81095 · doi:10.1016/j.geomphys.2011.04.021
[53] A. de Goursac, J.-C. Wallet and R. Wulkenhaar, On the vacuum states for noncommutative gauge theory, Eur. Phys. J.C 56 (2008) 293 [arXiv:0803.3035] [INSPIRE]. · Zbl 1189.81214 · doi:10.1140/epjc/s10052-008-0652-0
[54] D.N. Blaschke, H. Grosse, E. Kronberger, M. Schweda and M. Wohlgenannt, Loop calculations for the non-commutative U(1) gauge field model with oscillator term, Eur. Phys. J.C 67 (2010) 575 [arXiv:0912.3642] [INSPIRE]. · doi:10.1140/epjc/s10052-010-1295-5
[55] D.N. Blaschke, F. Gieres, E. Kronberger, M. Schweda and M. Wohlgenannt, Translation-invariant models for non-commutative gauge fields, J. Phys.A 41 (2008) 252002 [arXiv:0804.1914] [INSPIRE]. · Zbl 1192.81326
[56] D.N. Blaschke, A. Rofner, R.I. Sedmik and M. Wohlgenannt, On non-commutative U⋆(1) gauge models and renormalizability, J. Phys.A 43 (2010) 425401 [arXiv:0912.2634] [INSPIRE]. · Zbl 1201.81101
[57] D.N. Blaschke, A new approach to non-commutative U⋆(N ) gauge fields, Europhys. Lett.91 (2010) 11001. · doi:10.1209/0295-5075/91/11001
[58] D.N. Blaschke, Towards consistent non-commutative gauge theories, Ph.D. thesis, Vienna University of Technology, Vienna, Austria (2008), available at http://media.obvsg.at/AC05036560.
[59] D.N. Blaschke, H. Grosse and J.-C. Wallet, Slavnov-Taylor identities, non-commutative gauge theories and infrared divergences, JHEP06 (2013) 038 [arXiv:1302.2903] [INSPIRE]. · Zbl 1342.81631 · doi:10.1007/JHEP06(2013)038
[60] D.N. Blaschke et al., On the problem of renormalizability in non-commutative gauge field models: a critical review, Fortsch. Phys.58 (2010) 364 [arXiv:0908.0467] [INSPIRE]. · Zbl 1191.81200 · doi:10.1002/prop.200900102
[61] H. Aoki et al., Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys.B 565 (2000) 176 [hep-th/9908141] [INSPIRE]. · Zbl 0956.81089 · doi:10.1016/S0550-3213(99)00633-1
[62] J. Ambjørn, Y. Makeenko, J. Nishimura and R. Szabo, Finite N matrix models of noncommutative gauge theory, JHEP11 (1999) 029 [hep-th/9911041] [INSPIRE]. · Zbl 0957.81088 · doi:10.1088/1126-6708/1999/11/029
[63] H. Steinacker, Emergent gravity from noncommutative gauge theory, JHEP12 (2007) 049 [arXiv:0708.2426] [INSPIRE]. · Zbl 1246.81153 · doi:10.1088/1126-6708/2007/12/049
[64] H. Grosse, H. Steinacker and M. Wohlgenannt, Emergent gravity, matrix models and UV/IR mixing, JHEP04 (2008) 023 [arXiv:0802.0973] [INSPIRE]. · Zbl 1246.81162 · doi:10.1088/1126-6708/2008/04/023
[65] H. Steinacker, Emergent geometry and gravity from matrix models: an introduction, Class. Quant. Grav.27 (2010) 133001 [arXiv:1003.4134] [INSPIRE]. · Zbl 1255.83007 · doi:10.1088/0264-9381/27/13/133001
[66] H. Grosse, F. Lizzi and H. Steinacker, Noncommutative gauge theory and symmetry breaking in matrix models, Phys. Rev.D 81 (2010) 085034 [arXiv:1001.2703] [INSPIRE].
[67] H. Steinacker, Non-commutative geometry and matrix models, PoS (QGQGS 2011) 004 [arXiv:1109.5521] [INSPIRE]. · Zbl 1255.83007
[68] J.M. Gracia-Bondía and J.C. Varilly, Algebras of distributions suitable for phase space quantum mechanics. 1, J. Math. Phys.29 (1988) 869 [INSPIRE]. · Zbl 0652.46026 · doi:10.1063/1.528200
[69] J.C. Varilly and J.M. Gracia-Bondía, Algebras of distributions suitable for phase-space quantum mechanics. 2. Topologies on the Moyal algebra, J. Math. Phys.29 (1988) 880 [INSPIRE]. · Zbl 0652.46027 · doi:10.1063/1.527984
[70] J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces, Eur. Phys. J.C 16 (2000) 161 [hep-th/0001203] [INSPIRE]. · doi:10.1007/s100520050012
[71] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys.B 498 (1997) 467 [hep-th/9612115] [INSPIRE]. · Zbl 0979.81567 · doi:10.1016/S0550-3213(97)00290-3
[72] D.N. Blaschke and H. Steinacker, On the 1-loop effective action for the IKKT model and non-commutative branes, JHEP10 (2011) 120 [arXiv:1109.3097] [INSPIRE]. · Zbl 1303.81146 · doi:10.1007/JHEP10(2011)120
[73] J.-C. Wallet, Algebraic setup for the gauge fixing of BF and superBF systems, Phys. Lett.B 235 (1990) 71 [INSPIRE].
[74] L. Baulieu, M.P. Bellon, S. Ouvry and J.-C. Wallet, Balatin-Vilkovisky analysis of supersymmetric systems, Phys. Lett.B 252 (1990) 387 [INSPIRE].
[75] P.H. Ginsparg, Matrix models of 2 − D gravity, hep-th/9112013 [INSPIRE]. · Zbl 0985.82500
[76] I.K. Kostov, Exact solution of the six vertex model on a random lattice, Nucl. Phys.B 575 (2000) 513 [hep-th/9911023] [INSPIRE]. · Zbl 1037.82509 · doi:10.1016/S0550-3213(00)00060-2
[77] N. Dunford and J.T. Schwartz, Linear operators II: spectral theory, Wiley Interscience, U.S.A. (1963) · Zbl 0128.34803
[78] N.I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner (1965). · Zbl 0135.33803
[79] R. Koekoek, P.A. Lesky and R.F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Springer, Berlin, Germany (2010). · Zbl 1200.33012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.