×

Noncommutative gauge theories on \( {{\mathbb{R}}}_{\lambda}^3 \): perturbatively finite models. (English) Zbl 1387.81266

Summary: We show that natural noncommutative gauge theory models on \( {{\mathbb{R}}}_{\lambda}^3 \) can accommodate gauge invariant harmonic terms, thanks to the existence of a relationship between the center of \( {{\mathbb{R}}}_{\lambda}^3 \) and the components of the gauge invariant 1-form canonical connection. This latter object shows up naturally within the present noncommutative differential calculus. Restricting ourselves to positive actions with covariant coordinates as field variables, a suitable gauge-fixing leads to a family of matrix models with quartic interactions and kinetic operators with compact resolvent. Their perturbative behavior is then studied. We first compute the 2-point and 4-point functions at the one-loop order within a subfamily of these matrix models for which the interactions have a symmetric form. We find that the corresponding contributions are finite. We then extend this result to arbitrary order. We find that the amplitudes of the ribbon diagrams for the models of this subfamily are finite to all orders in perturbation. This result extends finally to any of the models of the whole family of matrix models obtained from the above gauge-fixing. The origin of this result is discussed. Finally, the existence of a particular model related to integrable hierarchies is indicated, for which the partition function is expressible as a product of ratios of determinants.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
83C65 Methods of noncommutative geometry in general relativity
83C45 Quantization of the gravitational field

References:

[1] A. Connes, Noncommutative Geometry, Academic Press Inc., San Diego (1994), available at http://www.alainconnes.org/downloads.html. · Zbl 0818.46076
[2] J.M. Gracia-Bondía, J.C. Várilly and H. Figueroa, Elements of Noncommutative Geometry, Birkhaüser Advanced Texts, Birkhaüser Boston, Basel, Berlin (2001). · Zbl 0958.46039
[3] S. Doplicher, K. Fredenhagen and J.E. Roberts, Space-time quantization induced by classical gravity, Phys. Lett. B 331 (1994) 39 [INSPIRE]. · doi:10.1016/0370-2693(94)90940-7
[4] E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys.B 268 (1986) 253 [INSPIRE]. · doi:10.1016/0550-3213(86)90155-0
[5] J. Madore, The Commutative Limit of a Matrix Geometry, J. Math. Phys.32 (1991) 332 [INSPIRE]. · Zbl 0727.53084 · doi:10.1063/1.529418
[6] H. Grosse and J. Madore, A noncommutative version of the Schwinger model, Phys. Lett.B 283 (1992) 218 [INSPIRE]. · doi:10.1016/0370-2693(92)90011-R
[7] M. Dubois-Violette, R. Kerner and J. Madore, Noncommutative Differential Geometry of Matrix Algebras, J. Math. Phys.31 (1990) 316 [INSPIRE]. · Zbl 0704.53081 · doi:10.1063/1.528916
[8] M. Dubois-Violette, R. Kerner and J. Madore, Noncommutative Differential Geometry and New Models of Gauge Theory, J. Math. Phys.31 (1990) 323 [INSPIRE]. · Zbl 0704.53082 · doi:10.1063/1.528917
[9] J. Madore, An introduction to Noncommutative Differential Geometry and its Physical Applications, Cambridge University Press, Lond. Math. Soc. Lect. Note Ser.257 (2002). · Zbl 0842.58002
[10] S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP02 (2000) 020 [hep-th/9912072] [INSPIRE]. · Zbl 0959.81108 · doi:10.1088/1126-6708/2000/02/020
[11] A. Matusis, L. Susskind and N. Toumbas, The IR/UV connection in the noncommutative gauge theories, JHEP12 (2000) 002 [hep-th/0002075] [INSPIRE]. · Zbl 0990.81549 · doi:10.1088/1126-6708/2000/12/002
[12] I. Chepelev and R. Roiban, Renormalization of quantum field theories on noncommutative Rd. 1. Scalars, JHEP05 (2000) 037 [hep-th/9911098] [INSPIRE]. · Zbl 0990.81756 · doi:10.1088/1126-6708/2000/05/037
[13] M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys.73 (2001) 977 [hep-th/0106048] [INSPIRE]. · Zbl 1205.81126 · doi:10.1103/RevModPhys.73.977
[14] R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept.378 (2003) 207 [hep-th/0109162] [INSPIRE]. · Zbl 1042.81581 · doi:10.1016/S0370-1573(03)00059-0
[15] J.-C. Wallet, Noncommutative Induced Gauge Theories on Moyal Spaces, J. Phys. Conf. Ser.103 (2008) 012007 [arXiv:0708.2471] [INSPIRE]. · doi:10.1088/1742-6596/103/1/012007
[16] H. Grosse and R. Wulkenhaar, Power counting theorem for nonlocal matrix models and renormalization, Commun. Math. Phys.254 (2005) 91 [hep-th/0305066] [INSPIRE]. · Zbl 1079.81049 · doi:10.1007/s00220-004-1238-9
[17] H. Grosse and R. Wulkenhaar, Renormalization of ϕ4theory on noncommutativeℝ \[2 {\mathbb{R}}^2\] in the matrix base, JHEP12 (2003) 019 [hep-th/0307017] [INSPIRE]. · doi:10.1088/1126-6708/2003/12/019
[18] H. Grosse and R. Wulkenhaar, Renormalization of ϕ4theory on noncommutativeℝ \[4 {\mathbb{R}}^4\] in the matrix base, Commun. Math. Phys.256 (2005) 305 [hep-th/0401128] [INSPIRE]. · Zbl 1075.82005 · doi:10.1007/s00220-004-1285-2
[19] H. Grosse and R. Wulkenhaar, Self-Dual Noncommutative φ4-Theory in Four Dimensions is a Non-Perturbatively Solvable and Non-Trivial Quantum Field Theory, Commun. Math. Phys.329 (2014) 1069 [arXiv:1205.0465] [INSPIRE]. · Zbl 1305.81129 · doi:10.1007/s00220-014-1906-3
[20] R. Gurau, J. Magnen, V. Rivasseau and A. Tanasa, A translation-invariant renormalizable non-commutative scalar model, Commun. Math. Phys.287 (2009) 275 [arXiv:0802.0791] [INSPIRE]. · Zbl 1170.81041 · doi:10.1007/s00220-008-0658-3
[21] A. de Goursac and J.-C. Wallet, Symmetries of noncommutative scalar field theory, J. Phys.A 44 (2011) 055401 [arXiv:0911.2645] [INSPIRE]. · Zbl 1208.81192
[22] F. Vignes-Tourneret, Renormalization of the orientable non-commutative Gross-Neveu model, Ann. H. Poincaré8 (2007) 427. · Zbl 1133.81058 · doi:10.1007/s00023-006-0312-6
[23] A. Lakhoua, F. Vignes-Tourneret and J.-C. Wallet, One-loop β-functions for the Orientable Non-commutative Gross-Neveu Model, Eur. Phys. J.C 52 (2007) 735 [hep-th/0701170] [INSPIRE]. · Zbl 1189.81219 · doi:10.1140/epjc/s10052-007-0424-2
[24] E. Langmann, R.J. Szabo and K. Zarembo, Exact solution of quantum field theory on noncommutative phase spaces, JHEP01 (2004) 017 [hep-th/0308043] [INSPIRE]. · Zbl 1243.81205 · doi:10.1088/1126-6708/2004/01/017
[25] M. Dubois-Violette, Dérivations et calcul différentiel non commutatif, Compt. Rendus Acad. Sci. I Math.307 (1988) 403. · Zbl 0661.17012
[26] M. Dubois-Violette, Lectures on graded differential algebras and noncommutative geometry, math/9912017 [INSPIRE]. · Zbl 1038.58004
[27] J.-C. Wallet, Derivations of the Moyal algebra and noncommutative gauge theories, SIGMA5 (2009) 013 [arXiv:0811.3850] [INSPIRE]. · Zbl 1160.81470
[28] E. Cagnache, T. Masson and J.-C. Wallet, Noncommutative Yang-Mills-Higgs actions from derivation-based differential calculus, J. Noncommut. Geom.5 (2011) 39 [arXiv:0804.3061] [INSPIRE]. · Zbl 1226.81279 · doi:10.4171/JNCG/69
[29] A. de Goursac, T. Masson and J.-C. Wallet, Noncommutative epsilon-graded connections, J. Noncommut. Geom.6 (2012) 343 [arXiv:0811.3567] [INSPIRE]. · Zbl 1275.58003 · doi:10.4171/JNCG/94
[30] A. de Goursac, J.-C. Wallet and R. Wulkenhaar, Noncommutative Induced Gauge Theory, Eur. Phys. J.C 51 (2007) 977 [hep-th/0703075] [INSPIRE]. · Zbl 1189.81215 · doi:10.1140/epjc/s10052-007-0335-2
[31] H. Grosse and M. Wohlgenannt, Induced gauge theory on a noncommutative space, Eur. Phys. J. C 52 (2007) 435 [hep-th/0703169] [INSPIRE]. · Zbl 1189.81217 · doi:10.1140/epjc/s10052-007-0369-5
[32] H. Grosse and R. Wulkenhaar, 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory, J. Geom. Phys.62 (2012) 1583 [arXiv:0709.0095] [INSPIRE]. · Zbl 1243.58005 · doi:10.1016/j.geomphys.2012.03.005
[33] J.-C. Wallet, Connes distance by examples: Homothetic spectral metric spaces, Rev. Math. Phys.24 (2012) 1250027 [arXiv:1112.3285] [INSPIRE]. · Zbl 1256.46040 · doi:10.1142/S0129055X12500274
[34] E. Cagnache, E. Jolibois and J.-C. Wallet, Spectral distances: Results for Moyal plane and noncommutative torus, SIGMA6 (2010) 026 [arXiv:0912.4185] [INSPIRE]. · Zbl 1190.58010
[35] E. Cagnache, F. D’Andrea, P. Martinetti and J.-C. Wallet, The Spectral distance on the Moyal plane, J. Geom. Phys.61 (2011) 1881 [arXiv:0912.0906] [INSPIRE]. · Zbl 1226.81095 · doi:10.1016/j.geomphys.2011.04.021
[36] A. de Goursac, J.-C. Wallet and R. Wulkenhaar, On the vacuum states for noncommutative gauge theory, Eur. Phys. J.C 56 (2008) 293 [arXiv:0803.3035] [INSPIRE]. · Zbl 1189.81214 · doi:10.1140/epjc/s10052-008-0652-0
[37] A. de Goursac, A. Tanasa and J.C. Wallet, Vacuum configurations for renormalizable non-commutative scalar models, Eur. Phys. J.C 53 (2008) 459 [arXiv:0709.3950] [INSPIRE]. · Zbl 1189.81213 · doi:10.1140/epjc/s10052-007-0465-6
[38] P. Martinetti, P. Vitale and J.-C. Wallet, Noncommutative gauge theories onℝθ \[2 {\mathbb{R}}_{\theta}^2\] as matrix models, JHEP09 (2013) 051 [arXiv:1303.7185] [INSPIRE]. · Zbl 1342.81309 · doi:10.1007/JHEP09(2013)051
[39] D.N. Blaschke, A. Rofner, R.I.P. Sedmik and M. Wohlgenannt, On Non-Commutative U⋆(1) Gauge Models and Renormalizability, J. Phys.A 43 (2010) 425401 [arXiv:0912.2634] [INSPIRE]. · Zbl 1201.81101
[40] D.N. Blaschke, A New Approach to Non-Commutative U⋆(N) Gauge Fields, Europhys. Lett.91 (2010) 11001 [arXiv:1005.1578] [INSPIRE]. · doi:10.1209/0295-5075/91/11001
[41] D.N. Blaschke, E. Kronberger, A. Rofner, M. Schweda, R.I.P. Sedmik and M. Wohlgenannt, On the Problem of Renormalizability in Non-Commutative Gauge Field Models: A Critical Review, Fortsch. Phys.58 (2010) 364 [arXiv:0908.0467] [INSPIRE]. · Zbl 1191.81200 · doi:10.1002/prop.200900102
[42] D.N. Blaschke, H. Grosse and J.-C. Wallet, Slavnov-Taylor identities, non-commutative gauge theories and infrared divergences, JHEP06 (2013) 038 [arXiv:1302.2903] [INSPIRE]. · Zbl 1342.81631 · doi:10.1007/JHEP06(2013)038
[43] H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys.B 565 (2000) 176 [hep-th/9908141] [INSPIRE]. · Zbl 0956.81089 · doi:10.1016/S0550-3213(99)00633-1
[44] H. Steinacker, Emergent Geometry and Gravity from Matrix Models: an Introduction, Class. Quant. Grav.27 (2010) 133001 [arXiv:1003.4134] [INSPIRE]. · Zbl 1255.83007 · doi:10.1088/0264-9381/27/13/133001
[45] H. Steinacker, Non-commutative geometry and matrix models, PoS(QGQGS 2011)004 [arXiv:1109.5521] [INSPIRE]. · Zbl 1255.83007
[46] H. Grosse, F. Lizzi and H. Steinacker, Noncommutative gauge theory and symmetry breaking in matrix models, Phys. Rev.D 81 (2010) 085034 [arXiv:1001.2703] [INSPIRE].
[47] H. Steinacker, Quantized gauge theory on the fuzzy sphere as random matrix model, Nucl. Phys.B 679 (2004) 66 [hep-th/0307075] [INSPIRE]. · Zbl 1045.81526 · doi:10.1016/j.nuclphysb.2003.12.005
[48] H. Steinacker and R.J. Szabo, Localization for Yang-Mills theory on the fuzzy sphere, Commun. Math. Phys.278 (2008) 193 [hep-th/0701041] [INSPIRE]. · Zbl 1156.81041 · doi:10.1007/s00220-007-0386-0
[49] H. Grosse, H. Steinacker and M. Wohlgenannt, Emergent Gravity, Matrix Models and UV/IR Mixing, JHEP04 (2008) 023 [arXiv:0802.0973] [INSPIRE]. · Zbl 1246.81162 · doi:10.1088/1126-6708/2008/04/023
[50] D.N. Blaschke, H. Steinacker and M. Wohlgenannt, Heat kernel expansion and induced action for the matrix model Dirac operator, JHEP03 (2011) 002 [arXiv:1012.4344] [INSPIRE]. · Zbl 1301.81105 · doi:10.1007/JHEP03(2011)002
[51] P. Vitale and J.-C. Wallet, Noncommutative field theories onℝλ \[3 {\mathbb{R}}_{\uplambda}^3 \]: Toward UV/IR mixing freedom, JHEP04 (2013) 115 [arXiv:1212.5131] [INSPIRE]. · Zbl 1342.81641 · doi:10.1007/JHEP04(2013)115
[52] A.B. Hammou, M. Lagraa and M.M. Sheikh-Jabbari, Coherent state induced star product onℝλ \[3 {\mathbb{R}}_{\uplambda}^3\] and the fuzzy sphere, Phys. Rev.D 66 (2002) 025025 [hep-th/0110291] [INSPIRE].
[53] J.M. Gracia-Bondia, F. Lizzi, G. Marmo and P. Vitale, Infinitely many star products to play with, JHEP04 (2002) 026 [hep-th/0112092] [INSPIRE]. · doi:10.1088/1126-6708/2002/04/026
[54] L. Rosa and P. Vitale, On the ⋆-product quantization and the Duflo map in three dimensions, Mod. Phys. Lett.A 27 (2012) 1250207 [arXiv:1209.2941] [INSPIRE]. · Zbl 1260.81137 · doi:10.1142/S0217732312502070
[55] A. Géré, P. Vitale and J.-C. Wallet, Quantum gauge theories on noncommutative three-dimensional space, Phys. Rev.D 90 (2014) 045019 [arXiv:1312.6145] [INSPIRE].
[56] J.C. Wallet, Algebraic Setup for the Gauge Fixing of Bf and Superbf Systems, Phys. Lett.B 235 (1990) 71 [INSPIRE]. · doi:10.1016/0370-2693(90)90099-R
[57] R. Stora, F. Thuillier and J.-C. Wallet, Algebraic structure of cohomological field theory models and equivariant cohomology, in Infinite dimensional geometry, non commutative geometry, operator algebras, fundamental interactions, World Scientific (1995), pg. 266-297 [INSPIRE].
[58] P. Kustaanheimo and E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization, J. Reine Angew. Math.218 (1965) 204. · Zbl 0151.34901
[59] P. Vitale, Noncommutative field theory onℝλ \[3 {\mathbb{R}}_{\uplambda}^3 \], Fortsch. Phys.62 (2014) 825 [arXiv:1406.1372] [INSPIRE]. · Zbl 1338.81279 · doi:10.1002/prop.201400037
[60] J.-L. Koszul, Lectures on fibre bundles and differential geometry, Tata Institute, Bombay, Tata Inst. Res. Fund. Lect. Math. Phys.20 (1960). · Zbl 0244.53026
[61] D.N. Blaschke, H. Grosse and M. Schweda, Non-commutative U(1) gauge theory onℝθ \[4 {\mathbb{R}}_{\uptheta}^4\] with oscillator term and BRST symmetry, Europhys. Lett.79 (2007) 61002 [arXiv:0705.4205] [INSPIRE]. · doi:10.1209/0295-5075/79/61002
[62] A. Yu. Alekseev, A. Recknagel and V. Schomerus, Brane dynamics in background fluxes and noncommutative geometry, JHEP05 (2000) 010 [hep-th/0003187] [INSPIRE]. · Zbl 0992.81061 · doi:10.1088/1126-6708/2000/05/010
[63] D. Jurman and H. Steinacker, 2D fuzzy Anti-de Sitter space from matrix models, JHEP01 (2014) 100 [arXiv:1309.1598] [INSPIRE]. · doi:10.1007/JHEP01(2014)100
[64] T. Jurić, P. Martinetti and J.-C. Wallet, Integrable Toda hierarchies and exact formulas in 3-d noncommutative gauge theories, in preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.