×

Numerical simulation for time-fractional nonlinear reaction-diffusion system on a uniform and nonuniform time stepping. (English) Zbl 1473.65256

Summary: In this article, two nonstandard high-order schemes on a uniform and nonuniform time stepping combined with the multi-parameter exponential fitting technique (MPEF) have been developed to solve the time-fractional nonlinear reaction-diffusion system. The first method based on the MPEF combined with the 3-weighted shifted-Grünwald-Letnikov approximation with uniform time stepping, this scheme leads to a numerical solution that suffers from the singularity near \(t = 0\). In order to frustrate this singularity, a nonstandard higher-order L1-approximation for a nonuniform time-stepping scheme is developed. The developed scheme’s convergence and unconditionally stability analysis have been verified. Numerical results effectively validate the theoretical aspects.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35K57 Reaction-diffusion equations
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] OnarcanAT, AdarN, DagI. Trigonometric cubic B‐spline collocation algorithm for numerical solutions of reaction-diffusion equation systems. Comput Appl Math. 2018;37(5):6848‐6869. https://doi.org/10.1007/s40314-018-0713-4 · Zbl 1413.65306 · doi:10.1007/s40314-018-0713-4
[2] ZahraWK, HikalMM. Non standard finite difference method for solving variable order fractional optimal control problems. J Vib Control. 2017;23(6):948‐958. · Zbl 1387.93095
[3] MaitiS, ShawS, ShitGC. Caputo-Fabrizio fractional order model on MHD blood flow with heat and mass transfer through a porous vessel in the presence of thermal radiation. Phys a Stat Mech its Appl. 2020;540:1‐17, 123149. https://doi.org/10.1016/j.physa.2019.123149 · Zbl 07457986 · doi:10.1016/j.physa.2019.123149
[4] SierociukD, DzielinskiA, SarwasG, PetrasI, PodlubnyI, SkovranekT. Modelling heat transfer in heterogeneous media using fractional calculus. Philos Trans R Soc a Math Phys Eng Sci. 2013;371(1990):1‐10, 20120146. https://doi.org/10.1098/rsta.2012.0146 · Zbl 1382.80004 · doi:10.1098/rsta.2012.0146
[5] QiaoY, ZhaoJ, FengX. A compact integrated RBF method for time fractional convection-diffusion-reaction equations. Comput Math Appl. 2019;77(9):2263‐2278. https://doi.org/10.1016/j.camwa.2018.12.017 · Zbl 1442.65297 · doi:10.1016/j.camwa.2018.12.017
[6] WazwazAM. New travelling wave solutions to the Boussinesq and the Klein‐Gordon equations. Commun Nonlinear Sci Numer Simul. 2008;13(5):889‐901. · Zbl 1221.35372
[7] WazwazA‐M. The tanh method: exact solutions of the sine‐Gordon and the sinh‐Gordon equations. Appl Math Comput. 2005;167(2):1196‐1210. https://doi.org/10.1016/J.AMC.2004.08.005 · Zbl 1082.65585 · doi:10.1016/J.AMC.2004.08.005
[8] ZahraWK, NasrMA. Exponentially fitted methods for solving two‐dimensional time fractional damped Klein-Gordon equation with nonlinear source term. Commun Nonlinear Sci Numer Simul. 2019;73:177‐194. https://doi.org/10.1016/j.cnsns.2019.01.016 · Zbl 1464.65095 · doi:10.1016/j.cnsns.2019.01.016
[9] KumarS, KumarR, CattaniC, SametB. Chaotic behaviour of fractional predator‐prey dynamical system. Chaos Solitons Fractals. 2020;135:1‐12, 109811. https://doi.org/10.1016/j.chaos.2020.109811 · Zbl 1489.92119 · doi:10.1016/j.chaos.2020.109811
[10] GhanbariB, KumarS, KumarR. A study of behaviour for immune and tumor cells in immunogenetic tumour model with non‐singular fractional derivative. Chaos Solitons Fractals. 2020;133:1‐11. https://doi.org/10.1016/j.chaos.2020.109619 · Zbl 1483.92060 · doi:10.1016/j.chaos.2020.109619
[11] KumarS, KumarA, SametB, Gómez‐aguilarJF, OsmanMS. Study of tumor and effector cells in fractional tumor‐immune model for cancer treatment. Chaos Solitons Fractals. 2020;141:1‐14, 110321. https://doi.org/10.1016/j.chaos.2020.110321 · Zbl 1496.92034 · doi:10.1016/j.chaos.2020.110321
[12] ChangA, SunH, ZhengC, LuB. A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs. Physica a. 2018;502:356‐369. https://doi.org/10.1016/j.physa.2018.02.080 · Zbl 1514.76073 · doi:10.1016/j.physa.2018.02.080
[13] KumarS, MehdiM. New analytical method for gas dynamics equation arising in shock fronts. Comput Phys Commun. 2014;185(7):1947‐1954. https://doi.org/10.1016/j.cpc.2014.03.025 · Zbl 1351.35253 · doi:10.1016/j.cpc.2014.03.025
[14] OwolabiKM, AtanganaA. Computational study of multi‐species fractional reaction‐diffusion system with ABC operator. Chaos Solitons Fractals. 2019;128:280‐289. https://doi.org/10.1016/j.chaos.2019.07.050 · Zbl 1483.35324 · doi:10.1016/j.chaos.2019.07.050
[15] KumarS, KumarR, AgarwalRP, SametB. A study of fractional Lotka‐Volterra population model using Haar wavelet and Adams‐Bashforth‐Moulton methods. Math Method Appl Sci. 2020;43:5564‐5578. https://doi.org/10.1002/mma.6297 · Zbl 1452.65124 · doi:10.1002/mma.6297
[16] KumarS. A new analytical modelling for fractional telegraph equation via Laplace transform. App Math Model. 2014;38(13):3154‐3163. https://doi.org/10.1016/j.apm.2013.11.035 · Zbl 1427.35327 · doi:10.1016/j.apm.2013.11.035
[17] AtanganaA, QureshiS. Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos Solitons Fractals. 2019;123:320‐337. https://doi.org/10.1016/j.chaos.2019.04.020 · Zbl 1448.65268 · doi:10.1016/j.chaos.2019.04.020
[18] OwolabiKM. Numerical patterns in reaction – diffusion system with the Caputo and Atangana-Baleanu fractional derivatives. Chaos Solitons Fractals. 2018;115:160‐169. https://doi.org/10.1016/j.chaos.2018.08.025 · Zbl 1416.65305 · doi:10.1016/j.chaos.2018.08.025
[19] LenziEK, NetoRM, TateishiAA, LenziMK, RibeiroHV. Fractional diffusion equations coupled by reaction terms. Physica a. 2016;458:9‐16. https://doi.org/10.1016/j.physa.2016.03.020 · Zbl 1400.82134 · doi:10.1016/j.physa.2016.03.020
[20] WangT, SongF, WangH, KarniadakisGE. Fractional Gray-Scott model: well‐posedness, discretization, and simulations. Comput Methods Appl Mech Eng. 2019;347:1030‐1049. https://doi.org/10.1016/j.cma.2019.01.002 · Zbl 1440.35344 · doi:10.1016/j.cma.2019.01.002
[21] DoelmanA, KaperTJ, ZegelingPA. Pattern formation in the one‐dimensional Gray-Scott model. Nonlinearity. 1997;10(2):523‐563. https://doi.org/10.1088/0951-7715/10/2/013 · Zbl 0905.35044 · doi:10.1088/0951-7715/10/2/013
[22] OwolabiKM. High‐dimensional spatial patterns in fractional reaction‐diffusion system arising in biology. Chaos Solitons Fractals. 2020;134:1‐12, 109723. https://doi.org/10.1016/j.chaos.2020.109723 · Zbl 1483.35117 · doi:10.1016/j.chaos.2020.109723
[23] OwolabiKM, HammouchZ. Spatiotemporal patterns in the Belousov-Zhabotinskii reaction systems with Atangana-Baleanu fractional order derivative. Phys a Stat Mech its Appl. 2019;523:1072‐1090. https://doi.org/10.1016/j.physa.2019.04.017 · Zbl 07563440 · doi:10.1016/j.physa.2019.04.017
[24] WangY, ZhangR, WangZ, HanZ. Turing pattern in the fractional Gierer-Meinhardt model. Chin Phys B Vol. 2019;28(5):1‐7. https://doi.org/10.1088/1674-1056/28/5/050503 · doi:10.1088/1674-1056/28/5/050503
[25] MansouriD, AbdelmalekS, BendoukhaS. On the asymptotic stability of the time‐fractional Lengyel - Epstein system. Comput Math Appl. 2019;78(5):1415‐1430. https://doi.org/10.1016/j.camwa.2019.04.015 · Zbl 1442.92217 · doi:10.1016/j.camwa.2019.04.015
[26] KhanMA, AtanganaA. Modeling the dynamics of novel coronavirus (2019‐nCov) with fractional derivative. Alex Eng J. 2020;59(4):2379‐2389. https://doi.org/10.1016/j.aej.2020.02.033 · doi:10.1016/j.aej.2020.02.033
[27] KumarS, NisarKS, KumarR, CattaniC, SametB. A new Rabotnov fractional‐exponential function‐based fractional derivative for diffusion equation under external force. Math Methods Appl Sci. 2020;43:4460‐4471. https://doi.org/10.1002/mma.6208 · Zbl 1447.35359 · doi:10.1002/mma.6208
[28] KumarS, SametB. An analysis for heat equations arises in diffusion process using new Yang‐Abdel‐Aty‐Cattani fractional operator. Math Method Appl Sci. 2020;43:6062‐6080. https://doi.org/10.1002/mma.6347 · Zbl 1452.35242 · doi:10.1002/mma.6347
[29] KumarS. Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method. Ain Shams Eng J. 2014;5(2):569‐574. https://doi.org/10.1016/j.asej.2013.11.004 · doi:10.1016/j.asej.2013.11.004
[30] KumarS, KumarA, BaleanuD. Two analytical methods for time‐fractional nonlinear coupled Boussinesq-Burger’ s equations arise in propagation of shallow water waves. Nonlinear Dyn. 2016;85(2):699‐715. https://doi.org/10.1007/s11071-016-2716-2 · Zbl 1355.76015 · doi:10.1007/s11071-016-2716-2
[31] DoungmoEF, KumarS, MugishaSB. Similarities in a fifth‐order evolution equation with and with no singular kernel. Chaos Solitons Fractals. 2020;130:24‐26. https://doi.org/10.1016/j.chaos.2019.109467 · Zbl 1489.35297 · doi:10.1016/j.chaos.2019.109467
[32] ZahraWK, NasrMA, Van DaeleM. Exponentially fitted methods for solving time fractional nonlinear reaction-diffusion equation. Appl Math Comput. 2019;358:468‐490. https://doi.org/10.1016/j.amc.2019.04.019 · Zbl 1429.65206 · doi:10.1016/j.amc.2019.04.019
[33] Vanden BergheG, Van DaeleM. Exponentially‐fitted Numerov methods. J Comput Appl Math. 2007;200(1):140‐153. https://doi.org/10.1016/j.cam.2005.12.022 · Zbl 1110.65071 · doi:10.1016/j.cam.2005.12.022
[34] HollevoetD, Van DaeleM, Vanden BergheG. The optimal exponentially‐fitted Numerov method for solving two‐point boundary value problems. J Comput Appl Math. 2009;230(1):260‐269. https://doi.org/10.1016/j.cam.2008.11.011 · Zbl 1167.65406 · doi:10.1016/j.cam.2008.11.011
[35] IxaruLG. Operations on oscillatory functions. Comput Phys Commun. 1997;25(1):1‐19. https://doi.org/10.1016/S0097-8485(00)00087-5 · Zbl 1064.65021 · doi:10.1016/S0097-8485(00)00087-5
[36] MohebbiA, AbbaszadehM, DehghanM. High‐order difference scheme for the solution of linear time fractional Klein-Gordon equations. Numer Methods Partial Differ Equ. 2014;30(4):1234‐1253. https://doi.org/10.1002/num.21867 · Zbl 1300.65060 · doi:10.1002/num.21867
[37] DehghanM, MohebbiA. High order implicit collocation method for the solution of two‐dimensional linear hyperbolic equation. Numer Methods Partial Differ Equ. 2009;25(1):232‐243. · Zbl 1156.65087
[38] JinB, LazarovR, ZhouZ. An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J Numer Anal. 2015;36:197‐221. · Zbl 1336.65150
[39] ZahraWK, ElkholySM, FahmyM. Rational spline‐nonstandard finite difference scheme for the solution of time‐fractional Swift-Hohenberg equation. Appl Math Comput. 2019;343:372‐387. https://doi.org/10.1016/j.amc.2018.09.015 · Zbl 1429.65205 · doi:10.1016/j.amc.2018.09.015
[40] McLeanW, MustaphaK. Time‐stepping error bounds for fractional diffusion problems with non‐smooth initial data. J Comput Phys. 2015;293:201‐217. · Zbl 1349.65469
[41] LiaoHL, TangT, ZhouT. A second‐order and nonuniform time‐stepping maximum‐principle preserving scheme for time‐fractional Allen‐Cahn equations. J Comput Phys. 2020;414:1‐16, 109473. https://doi.org/10.1016/j.jcp.2020.109473 · Zbl 1440.65116 · doi:10.1016/j.jcp.2020.109473
[42] SooriZ, AminataeiA. A new approximation to Caputo‐type fractional diffusion and advection equations on non‐uniform meshes. Appl Numer Math. 2019;144:21‐41. https://doi.org/10.1016/j.apnum.2019.05.014 · Zbl 1462.65114 · doi:10.1016/j.apnum.2019.05.014
[43] FazioR, JannelliA. A finite difference method on non‐uniform meshes for time‐fractional advection – diffusion equations with a source term. Appl Sci. 2018;8(6):1‐16. https://doi.org/10.3390/app8060960 · doi:10.3390/app8060960
[44] ZhangY, SunZ, LiaoH. Finite difference methods for the time fractional diffusion equation on non‐uniform meshes. J Comput Phys. 2014;265:195‐210. https://doi.org/10.1016/j.jcp.2014.02.008 · Zbl 1349.65359 · doi:10.1016/j.jcp.2014.02.008
[45] LinY, XuC. Finite difference/spectral approximations for the time‐fractional diffusion equation. J Comput Phys. 2007;225(2):1533‐1552. https://doi.org/10.1016/j.jcp.2007.02.001 · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[46] HouT, TangT, YangJ. Numerical analysis of fully discretized Crank-Nicolson scheme for fractional‐in‐space Allen-Cahn equations. J Sci Comput. 2017;72(3):1214‐1231. https://doi.org/10.1007/s10915-017-0396-9 · Zbl 1379.65063 · doi:10.1007/s10915-017-0396-9
[47] Sales TeodoroG, Tenreiro MachadoJA, Capelas de OliveiraE. A review of definitions of fractional derivatives and other operators. J Comput Phys. 2019;388:195‐208. https://doi.org/10.1016/j.jcp.2019.03.008 · Zbl 1452.26008 · doi:10.1016/j.jcp.2019.03.008
[48] OldhamKB, SpanierJ. The fractional calculus: theory and applications of differentiation and integration to arbitrary order. New York and London: Academic Press; 1974:322. · Zbl 0292.26011
[49] MillerKS, RossB. An introduction to the fractional calculus and fractional differential equations. New York: Wiley‐Interscience; 1993:384. · Zbl 0789.26002
[50] SousaE. How to approximate the fractional derivative of order 1 < α ≤ 2. Int J Bifurc Chaos. 2012;22:1‐13. https://doi.org/10.1142/S0218127412500757 · Zbl 1258.26006 · doi:10.1142/S0218127412500757
[51] ZahraWK, DaeleMV. Discrete spline methods for solving two point fractional Bagley-Torvik equation. Appl Math Comput. 2017;296:42‐56. https://doi.org/10.1016/j.amc.2016.09.016 · Zbl 1411.65098 · doi:10.1016/j.amc.2016.09.016
[52] GaoGH, SunHW, SunZZ. Some high‐order difference schemes for the distributed‐order differential equations. J Comput Phys. 2015;298:337‐359. https://doi.org/10.1016/j.jcp.2015.05.047 · Zbl 1349.65296 · doi:10.1016/j.jcp.2015.05.047
[53] ZhouH, TianW, DengW. Quasi‐compact finite difference schemes for space fractional diffusion equations. J Sci Comput. 2012;56(1):45‐66. https://doi.org/10.1007/s10915-012-9661-0 · Zbl 1278.65130 · doi:10.1007/s10915-012-9661-0
[54] MickensRE. Nonstandard Finite Difference Models of Differential Equations. Singapore: World Scientific Publishing Co Pte Ltd; 1994. · Zbl 0810.65083
[55] ZahraWK, HikalMM. On fractional model of an HIV/AIDS with treatment and time delay. Progr Fract Differ Appl. 2016;2:55‐66.
[56] IxaruLG, Vanden BergheG. Exponential Fitting. New York: Springer‐Verlag New York Inc.; 2004https://doi.org/10.1007/978-1-4020-2100-8. · Zbl 1105.65082 · doi:10.1007/978-1-4020-2100-8
[57] ColemanJP, IxaruLG. Truncation errors in exponential fitting for oscillatory problems. SIAM J Numer Anal. 2006;44(4):1441‐1465. https://doi.org/10.1137/050641752 · Zbl 1123.65016 · doi:10.1137/050641752
[58] HollevoetD, Van DaeleM, Vanden BergheG. Exponentially fitted methods applied to fourth‐order boundary value problems. J Comput Appl Math. 2011;235(18):5380‐5393. https://doi.org/10.1016/j.cam.2011.05.049 · Zbl 1225.65075 · doi:10.1016/j.cam.2011.05.049
[59] Van DaeleM, HollevoetD, Vanden BergheG. Multiparameter exponentially‐fitted methods applied to second‐order boundary value problems. AIP Conf Proc. 2009;1168:750‐753. https://doi.org/10.1063/1.3241582 · Zbl 1182.65125 · doi:10.1063/1.3241582
[60] RubinSG, GravesJrRA. A cubic spline approximation for problems in fluid mechanics, NASA STI/recon tech. Rep. N. 75 (1975) R‐436. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750025272.pdf.
[61] OufWA, ZahraWK, El‐AzabMS. Numerical simulation for the solution of nonlinear Jaulent‐Miodek coupled equations using quartic B‐spline. Acta Univ Apulensis. 2016;3:35‐52. https://doi.org/10.17114/j.aua.2016.46.04 · Zbl 1413.65384 · doi:10.17114/j.aua.2016.46.04
[62] KorkmazA, ErsoyO, DagI. Motion of patterns modeled by the Gray‐Scott autocatalysis system in one dimension, MATCH Commun. Math Comput Chem. 2017;77:507‐526. · Zbl 1466.92304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.