×

A preference learning framework for multiple criteria sorting with diverse additive value models and valued assignment examples. (English) Zbl 1443.90220

Summary: We present a preference learning framework for multiple criteria sorting. We consider sorting procedures applying an additive value model with diverse types of marginal value functions (including linear, piecewise-linear, splined, and general monotone ones) under a unified analytical framework. Differently from the existing sorting methods that infer a preference model from crisp decision examples, where each reference alternative is assigned to a unique class, our framework allows considering valued assignment examples in which a reference alternative can be classified into multiple classes with respective credibility degrees. We propose an optimization model for constructing a preference model from such valued examples by maximizing the credible consistency among reference alternatives. To improve the predictive ability of the constructed model on new instances, we employ the regularization techniques. Moreover, to enhance the capability of addressing large-scale datasets, we introduce a state-of-the-art algorithm that is widely used in the machine learning community to solve the proposed optimization model in a computationally efficient way. Using the constructed additive value model, we determine both crisp and valued assignments for non-reference alternatives. Moreover, we allow the Decision Maker to prioritize the importance of classes and give the method a flexibility to adjust classification performance across classes according to the specified priorities. The practical usefulness of the analytical framework is demonstrated on a real-world dataset by comparing it to several existing sorting methods.

MSC:

90B50 Management decision making, including multiple objectives
91B06 Decision theory

Software:

PMTK

References:

[1] Almeida-Dias, J.; Figueira, J. R.; Roy, B., Electre Tri-C: A multiple criteria sorting method based on characteristic reference actions, European Journal of Operational Research, 204, 3, 565-580 (2010) · Zbl 1181.90140
[2] Bell, D. E.; Raiffa, H.; Tversky, A., Decision making: Descriptive, normative and prescriptive interactions (1988), Cambridge University Press: Cambridge University Press New York, USA · Zbl 0694.90001
[3] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3, 1, 1-122 (2011) · Zbl 1229.90122
[4] Brito, A. J.; de Almeida, A. T.; Mota, C. M., A multicriteria model for risk sorting of natural gas pipelines based on ELECTRE TRI integrating Utility Theory, European Journal of Operational Research, 200, 3, 812-821 (2010) · Zbl 1177.90263
[5] Cailloux, O.; Dias, L.; Mayag, B.; Mousseau, V., Indirect elicitation of MCDA sorting models using valued assignment examples (2012), Ecole Centrale Paris
[6] Cailloux, O.; Meyer, P.; Mousseau, V., Eliciting Electre Tri category limits for a group of decision makers, European Journal of Operational Research, 223, 1, 133-140 (2012) · Zbl 1253.91046
[7] Corrente, S.; Doumpos, M.; Greco, S.; Słowiński, R.; Zopounidis, C., Robust ordinal regression in preference learning and ranking, Machine Learning, 93, 2-3, 381-422 (2013) · Zbl 1300.68040
[8] Corrente, S.; Greco, S.; Kadziński, M.; Słowiński, R., Multiple criteria hierarchy process for sorting problems based on ordinal regression with additive value functions, Annals of Operations Research, 251, 1, 117-139 (2017) · Zbl 1408.90148
[9] Corrente, S.; Greco, S.; Słowiński, R., Multiple Criteria Hierarchy Process for ELECTRE Tri methods, European Journal of Operational Research, 252, 1, 191-203 (2016) · Zbl 1346.90420
[10] Dembczyński, K.; Kotłowski, W.; Słowiński, R., Additive preference model with piecewise linear components resulting from dominance-based rough set approximations, (Rutkowski, L.; Tadeusiewicz, R.; Zadeh, L.; Żurada, J., Proceedings of the international conference on artificial intelligence and soft computing-ICAISC 2006 (2006), Springer: Springer Berlin), 499-508 · Zbl 1298.68265
[11] Dias, L.; Mousseau, V.; Figueira, J.; Clımaco, J., An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI, European Journal of Operational Research, 138, 2, 332-348 (2002) · Zbl 1003.90512
[12] Dias, L.; Vetschera, R., On generating utility functions in Stochastic Multicriteria Acceptability Analysis, European Journal of Operational Research, 278, 2, 672-685 (2019) · Zbl 1431.91150
[13] Donoho, D. L., De-noising by soft-thresholding, IEEE Transactions on Information Theory, 41, 3, 613-627 (1995) · Zbl 0820.62002
[14] Doumpos, M.; Figueira, J. R., A multicriteria outranking approach for modeling corporate credit ratings: An application of the ELECTRE TRI-NC method, Omega, 82, 166-180 (2019)
[15] Doumpos, M.; Zopounidis, C., Multicriteria decision aid classification methods (2002), Springer US · Zbl 1029.91015
[16] Doumpos, M.; Zopounidis, C., Regularized estimation for preference disaggregation in multiple criteria decision making, Computational Optimization and Applications, 38, 1, 61-80 (2007) · Zbl 1171.90427
[17] Doumpos, M.; Zopounidis, C.; Galariotis, E., Inferring robust decision models in multicriteria classification problems: An experimental analysis, European Journal of Operational Research, 236, 2, 601-611 (2014) · Zbl 1317.91022
[18] Fallah Tehrani, A.; Cheng, W.; Dembczyński, K.; Hüllermeier, E., Learning monotone nonlinear models using the Choquet integral, Machine Learning, 9, 89, 183-211 (2012) · Zbl 1260.68348
[19] Figueira, J.; Roy, B., Determining the weights of criteria in the ELECTRE type methods with a revised Simos’ procedure, European Journal of Operational Research, 139, 2, 317-326 (2002) · Zbl 1001.90036
[20] Fürnkranz, J.; Hüllermeier, E., Preference learning: An introduction, (Fürnkranz, J.; Hüllermeier, E., Preference learning (2011), Springer Berlin), 1-17 · Zbl 1214.68285
[21] Ghaderi, M.; Ruiz, F.; Agell, N., A linear programming approach for learning non-monotonic additive value functions in multiple criteria decision aiding, European Journal of Operational Research, 259, 3, 1073-1084 (2017) · Zbl 1402.90083
[22] Goodfellow, I.; Bengio, Y.; Courville, A., Deep learning (2016), MIT press · Zbl 1373.68009
[23] Greco, S.; Matarazzo, B.; Słowiński, R., Rough sets theory for multicriteria decision analysis, European Journal of Operational Research, 129, 1, 1-47 (2001) · Zbl 1008.91016
[24] Greco, S.; Mousseau, V.; Słowiński, R., Multiple criteria sorting with a set of additive value functions, European Journal of Operational Research, 207, 3, 1455-1470 (2010) · Zbl 1206.91021
[25] Series in Statistics · Zbl 1273.62005
[26] Kadziński, M.; Ghaderi, M.; Dabrowski, M., Contingent preference disaggregation model for multiple criteria sorting problem, European Journal of Operational Research, 281, 2, 369-387 (2020) · Zbl 1431.91109
[27] Kadziński, M.; Ghaderi, M.; Wasikowski, J.; Agell, N., Expressiveness and robustness measures for the evaluation of an additive value function in multiple criteria preference disaggregation methods: An experimental analysis, Computers & Operations Research, 87, 146-164 (2017) · Zbl 1394.90348
[28] Kadziński, M.; Martyn, K.; Cinelli, M.; Słowiński, R.; Corrente, S.; Greco, S., Preference disaggregation for multiple criteria sorting with partial monotonicity constraints: Application to exposure management of nanomaterials, International Journal of Approximate Reasoning, 117, 60-80 (2020) · Zbl 1471.90076
[29] Kadziński, M.; Rocchi, L.; Miebs, G.; Grohmann, D.; Menconi, M.; Paolotti, L., Multiple Criteria Assessment of Insulating Materials with a Group Decision Framework Incorporating Outranking Preference Model and Characteristic Class Profiles, Group Decision and Negotiation, 27, 1, 33-59 (2018)
[30] Kadziński, M.; Słowiński, R.; Greco, S., Robustness analysis for decision under uncertainty with rule-based preference model, Information Sciences, 328, 321-339 (2016)
[31] Kadziński, M.; Tervonen, T., Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements, European Journal of Operational Research, 228, 1, 169-180 (2013)
[32] Keeney, R. L.; Raiffa, H., Decisions with multiple objectives: Preferences and value trade-offs (1976), Cambridge University Press · Zbl 0396.90001
[33] Lahdelma, R., & Salminen, P. (2010). Stochastic multicriteria acceptability analysis (SMAA). In M. Ehrgott, J.R. Figueira, & S. Greco (Eds.), Trends in multiple criteria decision analysis, pp. 285-315). Boston, MA: Springer US. · Zbl 1200.90104
[34] Liu, J.; Liao, X.; Kadziński, M.; Słowiński, R., Preference disaggregation within the regularization framework for sorting problems with multiple potentially non-monotonic criteria, European Journal of Operational Research, 276, 3, 1071-1089 (2019) · Zbl 1430.90335
[35] Liu, J.; Liao, X.; Zhao, W.; Yang, N., A classification approach based on the outranking model for multiple criteria ABC analysis, Omega, 61, 19-34 (2016)
[36] March, J. G., Bounded rationality, ambiguity, and the engineering of choice, The Bell Journal of Economics, 9, 2, 587-608 (1978)
[37] Michalski, R. S.; Bratko, I.; Bratko, A., Machine learning and data mining; Methods and applications (1998), John Wiley & Sons, Inc: John Wiley & Sons, Inc USA
[38] Miner, D.; Shook, A., MapReduce design patterns: Building effective algorithms and analytics for Hadoop and other systems (2012), O’Reilly Media, Inc
[39] Murphy, K. P., Machine learning: A probabilistic perspective (2012), MIT Press · Zbl 1295.68003
[40] Nocedal, J.; Wright, S. J., Numerical optimization (2004), Springer
[41] Pelissari, R.; Oliveira, M.; Amor, S. B.; Abackerli, A., A new FlowSort-based method to deal with information imperfections in sorting decision-making problems, European Journal of Operational Research, 276, 1, 235-246 (2019) · Zbl 1430.90344
[42] (in press)
[43] Rezaei, J., Piecewise linear value functions for multi-criteria decision-making, Expert Systems with Applications, 98, 43-56 (2018)
[44] Riabacke, M.; Danielson, M.; Ekenberg, L.; Larsson, A., A prescriptive approach for eliciting imprecise weight statements in an MCDA process, (Rossi, F.; Tsoukias, A., Algorithmic decision theory (2009), Springer: Springer Berlin, Heidelberg), 168-179 · Zbl 1260.90114
[45] Sobrie, O.; Gillis, N.; Mousseau, V.; Pirlot, M., UTA-poly and UTA-splines: additive value functions with polynomial marginals, European Journal of Operational Research, 264, 2, 405-418 (2018) · Zbl 1376.91075
[46] Sobrie, O.; Mousseau, V.; Pirlot, M., Learning monotone preferences using a majority rule sorting model, International Transactions in Operational Research, 26, 5, 1786-1809 (2019) · Zbl 07766372
[47] Spliet, R.; Tervonen, T., Preference inference with general additive value models and holistic pair-wise statements, European Journal of Operational Research, 232, 3, 607-612 (2014) · Zbl 1305.91114
[48] Tervonen, T.; Figueira, J.; Lahdelma, R.; Dias, J. A.; Salminen, P., A stochastic method for robustness analysis in sorting problems, European Journal of Operational Research, 192, 1, 236-242 (2009) · Zbl 1179.90226
[49] Train, K. E., Discrete choice methods with simulation (2009), Cambridge University Press · Zbl 1269.62073
[50] Vapnik, V., Statistical learning theory (1998), Wiley: Wiley New York · Zbl 0935.62007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.