×

Fixed points and completeness in metric and generalized metric spaces. (English. Russian original) Zbl 1451.54011

J. Math. Sci., New York 250, No. 3, 475-535 (2020); translation from Fundam. Prikl. Mat. 22, No. 1, 127-215 (2018).
As is well-known, completeness of the underlying space is not a necessary condition for the Banach contraction principle to hold. The present paper gives a survey of situations when fixed point results imply completeness. The cases of normed, metric, quasi-metric, ultrametric, partial metric and dislocated metric (i.e. metric-like) spaces are covered, as well as spaces endowed with an additional order structure. Some results in the case of multivalued mappings are also presented. Some other kinds of spaces are briefly mentioned. The connection with Ekeland’s variational principle and the Caristi-Kirk fixed point theorem is treated with more detail, including some refinements of known results. In a separate section the connection between the existence of fixed points and completeness is treated for mappings in partially ordered sets and lattices endowed with the respective topologies. Most of the known results are presented without proof, but several of them, including original ones, are given with full proofs.
In conclusion, one can say that this is a well-written article which can be very useful, both as a survey of known results in metric fixed point theory and as a collection of new results in this field.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
54E50 Complete metric spaces
54H12 Topological lattices, etc. (topological aspects)
06F30 Ordered topological structures

References:

[1] Abdeljawad, T.; Karapınar, E.; Taş, K., Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., 24, 11, 1900-1904 (2011) · Zbl 1230.54032
[2] Abramsky, S.; Jung, A., Domain theory, Handbook of Logic in Computer Science, 1-168 (1994), New York: Oxford Univ. Press, New York
[3] Acar, Ö.; Altun, I.; Romaguera, S., Caristi’s type mappings on complete partial metric spaces, Fixed Point Theory, 14, 1, 3-9 (2013) · Zbl 1282.54027
[4] Aghajani, A.; Razani, A., Some completeness theorems in the Menger probabilistic metric space, Appl. Sci., 10, 1-8 (2008) · Zbl 1173.54313
[5] C. Alegre, J. Marín, and S. Romaguera, “A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces,” Fixed Point Theory Appl., 40 (2014). · Zbl 1345.54037
[6] M. A. Alghamdi, N. Shahzad, and O. Valero, “On fixed point theory in partial metric spaces,” Fixed Point Theory Appl., 175 (2012). · Zbl 1469.54044
[7] M. A. Alghamdi, N. Shahzad, and O. Valero, “New results on the Baire partial quasi-metric space, fixed point theory and asymptotic complexity analysis for recursive programs,” Fixed Point Theory Appl., 14 (2014). · Zbl 1392.68450
[8] M. Alimohammady, A. Esmaeli, and R. Saadati, “Completeness results in probabilistic metric spaces,” Chaos Solitons Fractals, 39, No. 2, 765-769 (2009). · Zbl 1197.54043
[9] Alsiary, T.; Latif, A., Generalized Caristi fixed point results in partial metric spaces, J. Nonlinear Convex Anal., 16, 1, 119-125 (2015) · Zbl 1310.54035
[10] Altun, I.; Romaguera, S., Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point, Appl. Anal. Discrete Math., 6, 2, 247-256 (2012) · Zbl 1289.54112
[11] P. Amato, “A method for reducing fixed-point problems to completeness problems and vice versa,” Boll. Un. Mat. Ital. B (6), 3, No. 2, 463-476 (1984). · Zbl 0573.54034
[12] P. Amato, “The completion classes of a metric space,” Rend. Circ. Mat. Palermo (2) Suppl., No. 12, 157-168 (1986). · Zbl 0602.54032
[13] Amato, P., Some properties of completion classes for normed spaces, Note Mat., 13, 1, 123-134 (1993) · Zbl 0842.54032
[14] A. Amini-Harandi, “Metric-like spaces, partial metric spaces and fixed points,” Fixed Point Theory Appl., 204 (2012). · Zbl 1398.54064
[15] V. G. Angelov, “Fixed point theorem in uniform spaces and applications,” Czech. Math. J., 37 (112), No. 1, 19-33 (1987). · Zbl 0713.54045
[16] Angelov, VG, A converse to a contraction mapping theorem in uniform spaces, Nonlinear Anal., 12, 10, 989-996 (1988) · Zbl 0695.54030
[17] V. G. Angelov, “Corrigendum: ‘A converse to a contraction mapping theorem in uniform spaces’ [Nonlinear Anal. 12, No. 10, 989-996 (1988); MR0962764 (89k:54101)],” Nonlinear Anal., 23, No. 11, 1491 (1994). · Zbl 0810.54033
[18] V. G. Angelov, “An extension of Kirk-Caristi theorem to uniform spaces,” Antarct. J. Math., 1, No. 1, 47-51 (2004). · Zbl 1169.54358
[19] M.-C. Anisiu and V. Anisiu, “On the characterization of partial metric spaces and quasimetrics,” Fixed Point Theory, 17, No. 1 (2016). · Zbl 1341.54012
[20] Q. H. Ansari and L.-J. Lin, “Ekeland-type variational principles and equilibrium problems,” Topics in Nonconvex Optimization, Springer Optim. Appl., Vol. 50, Springer, New York (2011), pp. 147-174. · Zbl 1247.90259
[21] H. Aydi, E. Karapınar, and P. Kumam, “A note on modified proof of Caristi’s fixed point theorem on partial metric spaces,” J. Inequal. Appl., 355 (2013). · Zbl 1490.54038
[22] Aydi, H.; Karapınar, E.; Vetro, C., On Ekeland’s variational principle in partial metric spaces, Appl. Math. Inform. Sci., 9, 1, 257-262 (2015)
[23] A. C. Babu, “A converse to a generalized Banach contraction principle,” Publ. Inst. Math. (Beograd) (N.S.), 32 (46), 5-6 (1982). · Zbl 0514.54031
[24] Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3, 133-181 (1922) · JFM 48.0201.01
[25] T. Q. Bao, S. Cobzaş, and A. Soubeyran, Variational Principles and Completeness in Pseudo-Quasimetric Spaces, Preprint (2016).
[26] Bao, TQ; Mordukhovich, BS; Soubeyran, A., Fixed points and variational principles with applications to capability theory of wellbeing via variational rationality, Set-Valued Var. Anal., 23, 2, 375-398 (2015) · Zbl 1318.49029
[27] Bao, TQ; Mordukhovich, BS; Soubeyran, A., Variational analysis in psychological modeling, J. Optim. Theory Appl., 164, 1, 290-315 (2015) · Zbl 1320.90112
[28] T. Q. Bao and A. Soubeyran, Variational Analysis and Applications to Group Dynamics, Preprint (2015), http://www.optimization-online.org. · Zbl 1356.90161
[29] T. Q. Bao and M. A. Théra, “On extended versions of Dancs-Hegedüs-Medvegyev’s fixed-point theorem,” Optimization (2015). · Zbl 1369.49020
[30] Berinde, V.; Choban, M., Remarks on some completeness conditions involved in several common fixed point theorems, Creat. Math. Inform., 19, 1, 1-10 (2010) · Zbl 1265.54153
[31] Berinde, V.; Choban, M., Generalized distances and their associate metrics. Impact on fixed point theory, Creat. Math. Inform., 22, 1, 23-32 (2013) · Zbl 1289.54115
[32] C. Bessaga, “On the converse of the Banach ‘fixed-point principle’,” Colloq. Math., 7, 41-43 (1959). · Zbl 0089.31501
[33] F. Blanqui, “A point on fixpoints in posets,” arXiv:1502.06021 [math.LO] (2014).
[34] Borwein, JM, Completeness and the contraction principle, Proc. Am. Math. Soc., 87, 2, 246-250 (1983) · Zbl 0511.47039
[35] N. Bourbaki, “Sur le théorème de Zorn,” Arch. Math. (Basel), 2, 434-437 (1951). · Zbl 0045.32902
[36] Branciari, A., A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57, 1-2, 31-37 (2000) · Zbl 0963.54031
[37] Bukatin, M.; Kopperman, R.; Matthews, S.; Pajoohesh, H., Partial metric spaces, Am. Math. Mon., 116, 8, 708-718 (2009) · Zbl 1229.54037
[38] Chuang, C-S; Lin, L-J; Takahashi, W., Fixed point theorems for single-valued and set-valued mappings on complete metric spaces, J. Nonlinear Convex Anal., 13, 3, 515-527 (2012) · Zbl 1278.54027
[39] Cobzaş, S., Completeness in quasi-metric spaces and Ekeland Variational Principle, Topol. Appl., 158, 8, 1073-1084 (2011) · Zbl 1217.54026
[40] Cobzaş, S., Ekeland variational principle in asymmetric locally convex spaces, Topol. Appl., 159, 10-11, 2558-2569 (2012) · Zbl 1251.46039
[41] S. Cobzaş, “Functional analysis in asymmetric normed spaces,” in: Frontiers in Mathematics, Birkhäuser; Springer, Basel (2013). · Zbl 1266.46001
[42] Connell, EH, Properties of fixed point spaces, Proc. Am. Math. Soc., 10, 974-979 (1959) · Zbl 0163.17705
[43] S. Dancs, M. Hegedűs, and P. Medvegyev, “A general ordering and fixed-point principle in complete metric space,” Acta Sci. Math. (Szeged), 46, No. 1-4, 381-388 (1983). · Zbl 0532.54030
[44] Davis, AC, A characterization of complete lattices, Pacific J. Math., 5, 311-319 (1955) · Zbl 0064.26101
[45] Deimling, K., Nonlinear Functional Analysis (1985), Berlin: Springer, Berlin · Zbl 0559.47040
[46] Deza, MM; Deza, E., Encyclopedia of Distances (2014), Heidelberg: Springer, Heidelberg · Zbl 1301.51001
[47] Dhompongsa, S.; Inthakon, W.; Kaewkhao, A., Edelstein’s method and fixed point theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 350, 1, 12-17 (2009) · Zbl 1153.47046
[48] Dhompongsa, S.; Kaewcharoen, A., Fixed point theorems for nonexpansive mappings and Suzuki-generalized nonexpansive mappings on a Banach lattice, Nonlinear Anal., 71, 11, 5344-5353 (2009) · Zbl 1222.47082
[49] S. Dhompongsa and H. Yingtaweesittikul, “Fixed points for multivalued mappings and the metric completeness,” Fixed Point Theory Appl., 972395 (2009). · Zbl 1179.54055
[50] Edelstein, M., An extension of Banach’s contraction principle, Proc. Am. Math. Soc., 12, 7-10 (1961) · Zbl 0096.17101
[51] Edelstein, M., On fixed and periodic points under contractive mappings, J. London Math. Soc., 37, 74-79 (1962) · Zbl 0113.16503
[52] Edelstein, M., A theorem on fixed points under isometries, Am. Math. Mon., 70, 298-300 (1963) · Zbl 0115.33801
[53] Edelstein, M., A short proof of a theorem of L. Janos, Proc. Am. Math. Soc., 20, 509-510 (1969) · Zbl 0179.51401
[54] Elekes, M., On a converse to Banach’s fixed point theorem, Proc. Am. Math. Soc., 137, 9, 3139-3146 (2009) · Zbl 1173.54019
[55] Frink, O., Topology in lattices, Trans. Am. Math. Soc., 51, 569-582 (1942) · Zbl 0061.39305
[56] García-Falset, J.; Llorens-Fuster, E.; Suzuki, T., Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., 375, 1, 185-195 (2011) · Zbl 1214.47047
[57] Georgiev, PG, The strong Ekeland variational principle, the strong drop theorem and applications, J. Math. Anal. Appl., 131, 1, 1-21 (1988) · Zbl 0647.49009
[58] Ghosh, P.; Deb Ray, A., A characterization of completeness of generalized metric spaces using generalized Banach contraction principle, Demonstratio Math., 45, 3, 717-724 (2012) · Zbl 1272.54035
[59] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, Continuous Lattices and Domains, Encycl. Math. Its Appl., Vol. 93, Cambridge Univ. Press, Cambridge (2003). · Zbl 1088.06001
[60] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., Vol. 28, Cambridge Univ. Press, Cambridge (1990). · Zbl 0708.47031
[61] J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology, New Math. Monogr., Vol. 22, Cambridge University Press, Cambridge (2013). · Zbl 1280.54002
[62] M. Grabiec, Y. J. Cho, and R. Saadati, “Completeness and fixed points in probabilistic quasi-pseudo-metric spaces,” Bull. Stat. Econ., 2, No. A08, 39-47 (2008).
[63] A. Granas and J. Dugundji, Fixed point theory, Springer Monogr. Math., Springer, New York (2003). · Zbl 1025.47002
[64] Haghi, RH; Rezapour, S.; Shahzad, N., Be careful on partial metric fixed point results, Topol. Appl., 160, 3, 450-454 (2013) · Zbl 1267.54044
[65] P. Hitzler and A. K. Seda, “Dislocated topologies,” J. Electr. Eng., 51, No. 12/s, 3-7 (2000). · Zbl 0968.54001
[66] P. Hitzler and A. K. Seda, “A ‘converse’ of the Banach contraction mapping theorem,” J. Electr. Eng., 52, No. 10/s, 3-6 (2001). · Zbl 1047.54025
[67] P. Hitzler and A. K. Seda, “The fixed-point theorems of Priess-Crampe and Ribenboim in logic programming,” in: Valuation Theory and Its Applications, Vol. I (Saskatoon, SK, 1999 ), Fields Inst. Commun., Vol. 32, Amer. Math. Soc., Providence (2002), pp. 219-235. · Zbl 1005.68177
[68] Hosseini, SB; Saadati, R., Completeness results in probabilistic metric spaces, I, Commun. Appl. Anal., 9, 3-4, 549-553 (2005) · Zbl 1091.54013
[69] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr., Vol. 59, Amer. Math. Soc., Providence (1998). · Zbl 0947.03001
[70] Hu, TK, On a fixed-point theorem for metric spaces, Am. Math. Mon., 74, 436-437 (1967) · Zbl 0147.22903
[71] Huang, H., Global weak sharp minima and completeness of metric space, Acta Math. Sci. Ser. B Engl. Ed., 25, 2, 359-366 (2005) · Zbl 1141.90550
[72] S. Iemoto, W. Takahashi, and H. Yingtaweesittikul, “Nonlinear operators, fixed points and completeness of metric spaces,” in: Fixed Point Theory and Its Applications, Yokohama Publ., Yokohama (2010), pp. 93-101. · Zbl 1223.54057
[73] A. A. Ivanov, “Fixed points of mappings of metric spaces,” in: Studies in Topology, II, Zap. Naučn. Sem. Leningr. Otdel. Mat. Inst. Steklov. (LOMI), 66, 5-102 (1976). · Zbl 0366.54023
[74] Jachymski, J., An iff fixed point criterion for continuous self-mappings on a complete metric space, Aequationes Math., 48, 2-3, 163-170 (1994) · Zbl 0805.47051
[75] J. Jachymski, “Some consequences of fundamental ordering principles in metric fixed point theory,” Proceedings of Workshop on Fixed Point Theory (Kazimierz Dolny), Ann. Univ. Mariae Curie-Skłodowska Sect. A, 51, No. 2, 123-134 (1997), · Zbl 1004.54029
[76] Jachymski, J., Fixed point theorems in metric and uniform spaces via the Knaster-Tarski principle, Nonlinear Anal., 32, 2, 225-233 (1998) · Zbl 0901.54026
[77] Jachymski, J., Some consequences of the Tarski-Kantorovitch ordering theorem in metric fixed point theory, Quaestiones Math., 21, 1-2, 89-99 (1998) · Zbl 0924.47040
[78] Jachymski, J., A short proof of the converse to the contraction principle and some related results, Topol. Methods Nonlinear Anal., 15, 1, 179-186 (2000) · Zbl 0967.47035
[79] J. Jachymski, “Order-theoretic aspects of metric fixed point theory,” in: Handbook of Metric Fixed Point Theory, Kluwer Academic, Dordrecht (2001), pp. 613-641. · Zbl 1027.54065
[80] Jachymski, J., Converses to fixed point theorems of Zermelo and Caristi, Nonlinear Anal., 52, 5, 1455-1463 (2003) · Zbl 1030.54033
[81] Jachymski, J., Equivalent conditions for generalized contractions on (ordered) metric spaces, Nonlinear Anal., 74, 3, 768-774 (2011) · Zbl 1201.54034
[82] Jachymski, J., A stationary point theorem characterizing metric completeness, Appl. Math. Lett., 24, 2, 169-171 (2011) · Zbl 1295.54056
[83] Janković, S.; Kadelburg, Z.; Radenović, S., On cone metric spaces: a survey, Nonlinear Anal., 74, 7, 2591-2601 (2011) · Zbl 1221.54059
[84] Janoš, L., A converse of Banach’s contraction theorem, Proc. Am. Math. Soc., 18, 287-289 (1967) · Zbl 0148.43001
[85] L. Janoš, “A converse of the generalized Banach’s contraction theorem,” Arch. Math. (Basel), 21, 69-71 (1970). · Zbl 0195.52601
[86] Jiang, G-J, On characterization of metric completeness, Turk. J. Math., 24, 3, 267-272 (2000) · Zbl 0963.54034
[87] Kada, O.; Suzuki, T.; Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., 44, 2, 381-391 (1996) · Zbl 0897.54029
[88] E. Karapinar, “Generalizations of Caristi Kirk’s theorem on partial metric spaces,” Fixed Point Theory Appl., 4 (2011). · Zbl 1281.54027
[89] Karapınar, E.; Romaguera, S., On the weak form of Ekeland’s variational principle in quasimetric spaces, Topol. Appl., 184, 54-60 (2015) · Zbl 1309.54012
[90] E. Karapınar and P. Salimi, “Dislocated metric space to metric spaces with some fixed point theorems,” Fixed Point Theory Appl., 222 (2013). · Zbl 1470.54073
[91] Kasahara, S., Classroom notes: A remark on the converse of Banach’s Contraction Theorem, Am. Math. Mon., 75, 7, 775-776 (1968) · Zbl 0174.54201
[92] Keimel, K., Topological cones: functional analysis in a T_0-setting, Semigroup Forum, 77, 1, 109-142 (2008) · Zbl 1151.22006
[93] K. Keimel, “Weak topologies and compactness in asymmetric functional analysis,” Topol. Appl., 185/186, 1-22 (2015). · Zbl 1323.46049
[94] Kelley, JL, General topology (1975), Berlin: Springer, Berlin · Zbl 0306.54002
[95] J. C. Kelly, “Bitopological spaces,” Proc. London Math. Soc. (3), 13, 71-89 (1963). · Zbl 0107.16401
[96] Khamsi, MA, Generalized metric spaces: A survey, J. Fixed Point Theory Appl., 17, 3, 455-475 (2015) · Zbl 1331.54031
[97] M. Kikkawa and T. Suzuki, “Some similarity between contractions and Kannan mappings,” Fixed Point Theory Appl., 649749 (2008). · Zbl 1162.54019
[98] Kirk, W.; Shahzad, N., Fixed Point Theory in Distance Spaces (2014), Cham: Springer, Cham · Zbl 1308.58001
[99] W. A. Kirk, “Contraction mappings and extensions,” in: Handbook of Metric Fixed Point Theory, Kluwer Academic, Dordrecht, 1-34 (2001). · Zbl 1019.54001
[100] Kirk, WA; Saliga, LM, The Brézis-Browder order principle and extensions of Caristi’s theorem, Nonlinear Anal., 47, 4, 2765-2778 (2001) · Zbl 1042.54506
[101] Kirk, WA; Sims, B., Handbook of Metric Fixed Point Theory (2001), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0970.54001
[102] Klee, VL Jr, Some topological properties of convex sets, Trans. Am. Math. Soc., 78, 30-45 (1955) · Zbl 0064.10505
[103] Klimeš, J., Characterizations of completeness for semilattices by using of fixed points, Scripta Fac. Sci. Natur. Univ. Purk. Brun., 12, 10, 507-513 (1982)
[104] Klimeš, J., A characterization of a semilattice completeness, Scripta Fac. Sci. Natur. Univ. Purk. Brun., 14, 8, 399-407 (1984)
[105] J. Klimeš, “Fixed point characterization of completeness on lattices for relatively isotone mappings,” Arch. Math. (Brno), 20, No. 3, 125-132 (1984). · Zbl 0574.06004
[106] J. Klimeš, “A characterization of inductive posets,” Arch. Math. (Brno), 21, No. 1, 39-42 (1985). · Zbl 0583.06004
[107] Kopperman, RD, Which topologies are quasimetrizable?, Topol. Appl., 52, 2, 99-107 (1993) · Zbl 0801.54026
[108] Lahiri, BK; Chakrabarty, MK; Sen, A., Converse of Banach’s contraction principle and star operation, Proc. Natl. Acad. Sci. India Sect. A, 79, 4, 367-374 (2009) · Zbl 1237.54054
[109] Leader, S., A topological characterization of Banach contractions, Pacific J. Math., 69, 2, 461-466 (1977) · Zbl 0344.54040
[110] Leader, S., Uniformly contractive fixed points in compact metric spaces, Proc. Am. Math. Soc., 86, 1, 153-158 (1982) · Zbl 0507.54040
[111] Leader, S., Equivalent Cauchy sequences and contractive fixed points in metric spaces, Studia Math., 76, 1, 63-67 (1983) · Zbl 0469.54028
[112] Lee, W.; Choi, Y., A survey on characterizations of metric completeness, Nonlinear Anal. Forum, 19, 265-276 (2014) · Zbl 1304.54053
[113] Lin, L-J; Du, W-S, Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces, J. Math. Anal. Appl., 323, 1, 360-370 (2006) · Zbl 1101.49022
[114] Lin, L-J; Du, W-S, Some equivalent formulations of the generalized Ekeland’s variational principle and their applications, Nonlinear Anal., 67, 1, 187-199 (2007) · Zbl 1111.49013
[115] Lin, L-J; Du, W-S, On maximal element theorems, variants of Ekeland’s variational principle and their applications, Nonlinear Anal., 68, 5, 1246-1262 (2008) · Zbl 1133.58006
[116] Liu, Z., Fixed points and completeness, Turk. J. Math., 20, 4, 467-472 (1996) · Zbl 0874.47034
[117] Liu, Z.; Kang, SM, On characterizations of metric completeness, Indian J. Math., 44, 2, 183-187 (2002) · Zbl 1033.54016
[118] Liu, Z.; Kang, SM, On characterizations of ≤-completeness and metric completeness, Southeast Asian Bull. Math., 27, 2, 325-331 (2003) · Zbl 1061.54021
[119] Mańka, R., Connection between set theory and the fixed point property, Colloq. Math., 53, 2, 177-184 (1987) · Zbl 0677.54035
[120] R. Mańka, “Some forms of the axiom of choice,” Jbuch. Kurt-Gödel-Ges., 24-34 (1988). · Zbl 0687.04002
[121] Mańka, R., Turinici’s fixed point theorem and the axiom of choice, Rep. Math. Logic, 22, 15-19 (1988) · Zbl 0687.04003
[122] J. Marín, S. Romaguera, and P. Tirado, “Weakly contractive multivalued maps and w-distances on complete quasi-metric spaces,” Fixed Point Theory Appl., 2 (2011). · Zbl 1281.54031
[123] Markowsky, G., Chain-complete posets and directed sets with applications, Algebra Universalis, 6, 1, 53-68 (1976) · Zbl 0332.06001
[124] S. G. Matthews, Partial Metric Spaces, Research Report, No. 212, Univ. of Warwick, UK (1992).
[125] S. G. Matthews, The Cycle Contraction Mapping Theorem, Research Report, No. 228, Univ. of Warwick, UK (1992).
[126] S. G. Matthews, The Topology of Partial Metric Spaces, Research Report, No. 222, Univ. of Warwick, UK (1992).
[127] S. G. Matthews, “Partial metric topology,” in: Papers on General Topology and Applications (Flushing, NY, 1992), Ann. New York Acad. Sci., Vol. 728, New York Acad. Sci., New York (1994), pp. 183-197. · Zbl 0911.54025
[128] Meyers, PR, Some extensions of Banach’s contraction theorem, J. Res. Natl. Bur. Stand. Sect. B, 69B, 179-184 (1965) · Zbl 0136.19705
[129] Meyers, PR, A converse to Banach’s contraction theorem, J. Res. Nat. Bur. Stand. Sect. B, 71B, 73-76 (1967) · Zbl 0161.19803
[130] Mukherjee, RN; Som, T., An application of Meyer’s theorem on converse of Banach’s contraction principle, Bull. Inst. Math. Acad. Sinica, 12, 3, 253-255 (1984) · Zbl 0544.54038
[131] Nemytskiĭ, VV, The fixed point method in analysis, Usp. Mat. Nauk, 1, 141-174 (1936) · Zbl 0016.21404
[132] A.-M. Nicolae, On Completeness and Fixed Points, Master Thesis, Babeş-Bolyai University, Fac. of Math. and Comput. Sci., Cluj-Napoca (2008).
[133] J. J. Nieto, R. L. Pouso, and R. Rodríguez-López, “Fixed point theorems in ordered abstract spaces,” Proc. Am. Math. Soc., 135, No. 8, 2505-2517 (2007). · Zbl 1126.47045
[134] J. J. Nieto and R. Rodríguez-López, “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations,” Order, 22, No. 3, 223-239 (2005). · Zbl 1095.47013
[135] J. J. Nieto and R. Rodríguez-López, “Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations,” Acta Math. Sin. (Engl. Ser.), 23, No. 12, 2205-2212 (2007). · Zbl 1140.47045
[136] O’Neill, SJ, Partial metrics, valuations, and domain theory, Ann. N.Y. Acad. Sci., 806, 304-315 (1996) · Zbl 0889.54018
[137] Oltra, S.; Valero, O., Banach’s fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste, 36, 1-2, 17-26 (2004) · Zbl 1080.54030
[138] V. I. Opoitsev, “A converse of the contraction mapping principle,” Usp. Mat. Nauk, 31, No. 4 (190), 169-198 (1976). · Zbl 0335.54025
[139] Paesano, D.; Vetro, P., Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topol. Appl., 159, 3, 911-920 (2012) · Zbl 1241.54035
[140] B. Palczewski and A. Miczko, “On some converses of generalized Banach contraction principles,” Nonlinear Functional Analysis and Its Applications (Maratea, 1985 ), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 173, Reidel, Dordrecht (1986), pp. 335-351. · Zbl 0599.54051
[141] Palczewski, B.; Miczko, A., Converses of generalized Banach contraction principles and remarks on mappings with a contractive iterate at the point, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 17, 1, 71-91 (1987) · Zbl 0639.47047
[142] Park, S.; Rhoades, BE, Comments on characterizations for metric completeness, Math. Japon., 31, 1, 95-97 (1986) · Zbl 0593.54047
[143] L. Pasicki, “Dislocated metric and fixed point theorems,” Fixed Point Theory Appl., 82 (2015). · Zbl 1345.54065
[144] Penot, J-P, The drop theorem, the petal theorem and Ekeland’s variational principle, Nonlinear Anal., 10, 9, 813-822 (1986) · Zbl 0612.49011
[145] Petalas, C.; Vidalis, T., A fixed point theorem in non-Archimedean vector spaces, Proc. Am. Math. Soc., 118, 3, 819-821 (1993) · Zbl 0791.47059
[146] Petruşel, A., Multivalued weakly Picard operators and applications, Sci. Math. Jpn., 59, 1, 169-202 (2004) · Zbl 1066.47058
[147] Petruşel, A.; Petruşel, G., Multivalued Picard operators, J. Nonlinear Convex Anal., 13, 1, 157-171 (2012) · Zbl 1243.54039
[148] Petruşel, A.; Rus, IA, Fixed point theorems in ordered L-spaces, Proc. Am. Math. Soc., 134, 2, 411-418 (2006) · Zbl 1086.47026
[149] Prieß-Crampe, S., Der Banachsche Fixpunktsatz für ultrametrische Räume, Results Math., 18, 1-2, 178-186 (1990) · Zbl 0764.54034
[150] Ran, ACM; Reurings, MCB, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc., 132, 5, 1435-1443 (2004) · Zbl 1060.47056
[151] S. Romaguera, “A Kirk type characterization of completeness for partial metric spaces,” Fixed Point Theory Appl., 493298 (2010). · Zbl 1193.54047
[152] S. Romaguera and P. Tirado, “A characterization of Smyth complete quasi-metric spaces via Caristi’s fixed point theorem,” Fixed Point Theory Appl., 183 (2015). · Zbl 1348.54060
[153] Romaguera, S.; Valero, O., Domain theoretic characterisations of quasi-metric completeness in terms of formal balls, Math. Struct. Comput. Sci., 20, 3, 453-472 (2010) · Zbl 1193.54016
[154] H. Rubin and J. E. Rubin, Equivalents of the Axiom of Choice. II, Stud. Logic Foundat. Math., Vol. 116, North-Holland, Amsterdam (1985). · Zbl 0582.03033
[155] I. A. Rus, Metrical Fixed Point Theorems, Univ. “Babeş-Bolyai,” Fac. Mat., Cluj-Napoca (1979). · Zbl 0506.54037
[156] Rus, IA, Weakly Picard mappings, Comment. Math. Univ. Carolin., 34, 4, 769-773 (1993) · Zbl 0787.54045
[157] I. A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca (2001). · Zbl 0968.54029
[158] Rus, IA, Picard operators and applications, Sci. Math. Jpn., 58, 1, 191-219 (2003) · Zbl 1031.47035
[159] Rus, IA, Fixed point theory in partial metric spaces, An. Univ. Vest Timiş. Ser. Mat.-Inform., 46, 2, 149-160 (2008) · Zbl 1199.54244
[160] I. A. Rus, A. Petruşel, and G. Petruşel, Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca (2008). · Zbl 1171.54034
[161] Samet, B., Discussion on ‘A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces’ by A. Branciari, Publ. Math. Debrecen, 76, 3-4, 493-494 (2010) · Zbl 1224.54106
[162] D. Scott, “Continuous lattices,” Toposes, Algebraic Geometry and Logic (Conf., Dalhousie Univ., Halifax, N. S., 1971), Springer, Berlin (1972), pp. 97-136. · Zbl 0239.54006
[163] N. Shahzad and O. Valero, “On 0-complete partial metric spaces and quantitative fixed point techniques in denotational semantics,” Abstr. Appl. Anal., 985095 (2013). · Zbl 1470.54112
[164] N. Shahzad and O. Valero, “A Nemytskii-Edelstein type fixed point theorem for partial metric spaces,” Fixed Point Theory Appl., 26 (2015). · Zbl 1347.54107
[165] Shioji, N.; Suzuki, T.; Takahashi, W., Contractive mappings, Kannan mappings and metric completeness, Proc. Am. Math. Soc., 126, 10, 3117-3124 (1998) · Zbl 0955.54009
[166] Smithson, RE, Fixed points of order preserving multifunctions, Proc. Am. Math. Soc., 28, 304-310 (1971) · Zbl 0238.06003
[167] Smithson, RE, Fixed points in partially ordered sets, Pacific J. Math., 45, 363-367 (1973) · Zbl 0248.06002
[168] V. Stoltenberg-Hansen, I. Lindström, and E. R. Griffor, Mathematical Theory of Domains, Cambridge Tracts in Theor. Comput. Sci., Vol. 22, Cambridge Univ. Press, Cambridge (1994). · Zbl 0828.06001
[169] Subrahmanyam, PV, Completeness and fixed-points, Monatsh. Math., 80, 4, 325-330 (1975) · Zbl 0312.54048
[170] Sullivan, F., A characterization of complete metric spaces, Proc. Am. Math. Soc., 83, 2, 345-346 (1981) · Zbl 0468.54021
[171] F. Sullivan, “Ordering and completeness of metric spaces,” Nieuw Arch. Wisk. (3), 29, No. 2, 178-193 (1981). · Zbl 0484.54024
[172] Suzuki, T., Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253, 2, 440-458 (2001) · Zbl 0983.54034
[173] T. Suzuki, “Several fixed point theorems concerning τ -distance,” Fixed Point Theory Appl., No. 3, 195-209 (2004). · Zbl 1076.54532
[174] T. Suzuki, “Counterexamples on τ-distance versions of generalized Caristi’s fixed point theorems,” Bull. Kyushu Inst. Technol. Pure Appl. Math., No. 52, 15-20 (2005). · Zbl 1080.54031
[175] Suzuki, T., The strong Ekeland variational principle, J. Math. Anal. Appl., 320, 2, 787-794 (2006) · Zbl 1099.49022
[176] Suzuki, T., Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340, 2, 1088-1095 (2008) · Zbl 1140.47041
[177] Suzuki, T., A generalized Banach contraction principle that characterizes metric completeness, Proc. Am. Math. Soc., 136, 5, 1861-1869 (2008) · Zbl 1145.54026
[178] T. Suzuki, “w-distances and τ-distances,” Nonlinear Funct. Anal. Appl., 13(1), 15-27 (2008). · Zbl 1160.54019
[179] T. Suzuki, “Some notes on τ-distance versions of Ekeland’s variational principle,” Bull. Kyushu Inst. Technol. Pure Appl. Math., No. 56, 19-28 (2009). · Zbl 1176.54036
[180] T. Suzuki, “Some notes on τ-distance versions of Ekeland’s variational principle,” Bull. Kyushu Inst. Technol. Pure Appl. Math., No. 56, 19-28 (2009). · Zbl 1176.54036
[181] Suzuki, T., Characterizations of reflexivity and compactness via the strong Ekeland variational principle, Nonlinear Anal., 72, 5, 2204-2209 (2010) · Zbl 1195.46011
[182] T. Suzuki, “Some notes on the class of contractions with respect to τ-distance,” Bull. Kyushu Inst. Technol. Pure Appl. Math., No. 57, 9-18 (2010). · Zbl 1213.54083
[183] Suzuki, T.; Takahashi, W., Fixed point theorems and characterizations of metric completeness, Topol. Methods Nonlinear Anal., 8, 2, 371-382 (1996) · Zbl 0902.47050
[184] W. Takahashi, “Existence theorems generalizing fixed point theorems for multivalued mappings,” Fixed Point Theory and Applications (Marseille, 1989), Pitman Res. Notes Math. Ser., Vol. 252, Longman Sci. Tech., Harlow (1991), pp. 397-406. · Zbl 0760.47029
[185] W. Takahashi, “Existence theorems in metric spaces and characterizations of metric completeness,” NLA98: Convex Analysis and Chaos (Sakado, 1998 ), Josai Math. Monogr., Vol. 1, Josai Univ., Sakado (1999), pp. 67-85. · Zbl 0943.47039
[186] W. Takahashi, Nonlinear Functional Analysis. Fixed Point Theory and Its Applications, Yokohama Publ., Yokohama (2000). · Zbl 0997.47002
[187] Takahashi, W.; Wong, N-C; Yao, J-C, Fixed point theorems for general contractive mappings with W-distances in metric spaces, J. Nonlinear Convex Anal., 14, 3, 637-648 (2013) · Zbl 1282.54050
[188] Tasković, MR, The axiom of choice, fixed point theorems, and inductive ordered sets, Proc. Am. Math. Soc., 116, 4, 897-904 (1992) · Zbl 0768.04005
[189] Tasković, MR, Axiom of choice—100th next, Math. Morav., 8, 1, 39-62 (2004) · Zbl 1144.03309
[190] Tasković, MR, The axiom of infinite choice, Math. Morav., 16, 1, 1-32 (2012) · Zbl 1299.03001
[191] Tataru, D., Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163, 2, 345-392 (1992) · Zbl 0757.35034
[192] Valero, O., On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6, 2, 229-240 (2005) · Zbl 1087.54020
[193] Valero, O., On Banach’s fixed point theorem and formal balls, Appl. Sci., 10, 256-258 (2008) · Zbl 1158.06300
[194] Wang, G.; Chen, BL; Wang, LS, A new converse to Banach’s contraction mapping theorem: a nonlinear convergence principle, Gongcheng Shuxue Xuebao, 16, 1, 135-138 (1999) · Zbl 0970.47515
[195] Ward, LE Jr, Completeness in semi-lattices, Can. J. Math., 9, 578-582 (1957) · Zbl 0079.26001
[196] Weston, JD, A characterization of metric completeness, Proc. Am. Math. Soc., 64, 1, 186-188 (1977) · Zbl 0368.54007
[197] Witt, E., On Zorn’s theorem, Rev. Math. Hisp.-Am., IV. Ser., 10, 82-85 (1950) · Zbl 0037.31901
[198] Wolk, ES, Dedekind completeness and a fixed-point theorem, Can. J. Math., 9, 400-405 (1957) · Zbl 0086.04302
[199] Wong, JSW, Generalizations of the converse of the contraction mapping principle, Can. J. Math., 18, 1095-1104 (1966) · Zbl 0146.18601
[200] Xiang, S-W, Equivalence of completeness and contraction property, Proc. Am. Math. Soc., S135, 4, 1051-1058 (2007) · Zbl 1121.54049
[201] E. Zeidler, Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems, Springer, New York (1986). · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.