×

A unifying representation of path integrals for fractional Brownian motions. (English) Zbl 1540.60067

Summary: Fractional Brownian motion (fBm) is an experimentally-relevant, non-Markovian Gaussian stochastic process with long-ranged correlations between the increments, parametrised by the so-called Hurst exponent \(H\); depending on its value the process can be sub-diffusive (\(0 < H < 1/2\)), diffusive (\(H = 1/2\)) or super-diffusive (\(1/2 < H < 1\)). There exist three alternative equally often used definitions of fBm – due to Lévy and due to Mandelbrot and van Ness (MvN), which differ by the interval on which the time variable is formally defined. Respectively, the covariance functions of these fBms have different functional forms. Moreover, the MvN fBms have stationary increments, while for the Lévy fBm this is not the case. One may therefore be tempted to conclude that these are, in fact, different processes which only accidentally bear the same name. Recently determined explicit path integral representations also appear to have very different functional forms, which only reinforces the latter conclusion. Here we develop a unifying equivalent path integral representation of all three fBms in terms of Riemann-Liouville fractional integrals, which links the fBms and proves that they indeed belong to the same family. We show that the action in such a representation involves the fractional integral of the same form and order (dependent on whether \(H < 1/2\) or \(H > 1/2\)) for all three cases, and differs only by the integration limits.
{© 2024 IOP Publishing Ltd}

MSC:

60G22 Fractional processes, including fractional Brownian motion
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

References:

[1] Feynman, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integrals, 1965, McGraw-Hill · Zbl 0176.54902
[2] Wiegel, F. W., Introduction to Path-Integral Methods in Physics and Polymer Science, 1986, World Scientific
[3] Kleinert, H., Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets, 2004, World Scientific · Zbl 1060.81004
[4] Wio, H. S., Path Integrals for Stochastic Processes: An Introduction, 2013, World Scientific · Zbl 1314.60005
[5] de Pirey Th, A.; Cugliandolo, L. F.; Lecomte, V.; van Wijland, F., Path integrals and stochastic calculus, Adv. Phys., 71, 1, 2022 · doi:10.1080/00018732.2023.2199229
[6] Ceperley, D. M., Path integrals in the theory of condensed helium, Rev. Mod. Phys., 67, 279, 1995 · doi:10.1103/RevModPhys.67.279
[7] Majumdar, S. N., Brownian functionals in physics and computer science, Curr. Sci., 89, 2076, 2005 · doi:10.1142/9789812772718_0006
[8] Boyer, D.; Dean, D. S.; Mejía-Monasterio, C.; Oshanin, G., Distribution of the least-squares estimators of a single Brownian trajectory diffusion coefficient, J. Stat. Mech., 2013 · Zbl 1456.60205 · doi:10.1088/1742-5468/2013/04/P04017
[9] Bray, A. J.; Majumdar, S. N.; Schehr, G., Persistence and first-passage properties in nonequilibrium systems, Adv. Phys., 62, 225, 2013 · doi:10.1080/00018732.2013.803819
[10] Kac, M., On distributions of certain Wiener functionals, Trans. Am. Math. Soc., 65, 1, 1949 · Zbl 0032.03501 · doi:10.1090/S0002-9947-1949-0027960-X
[11] Wiener, N1921The average of an analytic functionalProc. Natl Acad. Sci. USA7253; Wiener, N1921The average of an analytic functional and the brownian movementProc. Natl Acad. Sci. USA7294; Wiener, N1924The average value of a functionalProc. London Math. Soc.s2-22454
[12] Dean, D. S.; Miao, B.; Podgornik, R., Path integrals for higher derivative actions, J. Phys. A, 52, 2019 · Zbl 1509.46050 · doi:10.1088/1751-8121/ab54df
[13] Burkhardt, T. W.; Metzler, R.; Oshanin, G.; Redner, S., First passage of a randomly accelerated particle, First-Passage Phenomena and Their Applications, pp 21-44, 2014, World Scientific · Zbl 1291.00067
[14] Friedrich, R.; Eule, S., Path integral formulation of anomalous diffusion processes, 2011
[15] Eule, S.; Friedrich, R.; Janke, W.; Pelster, A., Towards a path-integral formulation of continuous time random walks, Path Integrals—New Trends and Perspectives, pp 581-4, 2012, World Scientific · Zbl 1180.82076
[16] Jumarie, G., Path integral for the probability of the trajectories generated by fractional dynamics subject to Gaussian white noise, Appl. Math. Lett., 20, 846, 2007 · Zbl 1142.82013 · doi:10.1016/j.aml.2006.08.015
[17] Calvo, I.; Sánchez, R.; Carreras, B. A., Fractional Lévy motion through path integrals, J. Phys. A: Math. Theor., 42, 2009 · Zbl 1155.82014 · doi:10.1088/1751-8113/42/5/055003
[18] Wio, H. S., Path integral approach to fractional Lévy motion, J. Phys. A: Math. Theor., 46, 2013 · Zbl 1267.82122 · doi:10.1088/1751-8113/46/11/115005
[19] Meerson, B.; Oshanin, G., Geometrical optics of large deviations of fractional Brownian motion, Phys. Rev. E, 105, 2022 · doi:10.1103/PhysRevE.105.064137
[20] Molchan, G., Maximum of a fractional brownian motion: probabilities of small values, Commun. Math. Phys., 205, 97, 1999 · Zbl 0942.60065 · doi:10.1007/s002200050669
[21] Krug, J.; Kallabis, H.; Majumdar, S. N.; Cornell, S. J.; Bray, A. J.; Sire, C., Persistence exponents for fluctuating interfaces, Phys. Rev. E, 56, 09, 1997 · doi:10.1103/PhysRevE.56.2702
[22] Guérin, T.; Levernier, N.; Bénichou, O.; Voituriez, R., Mean first-passage times of non-markovian random walkers in confinement, Nature, 534, 356, 2016 · doi:10.1038/nature18272
[23] Levernier, N.; Bénichou, O.; Guérin, T.; Voituriez, R., universal first-passage statistics in aging media, Phys. Rev. E, 98, 2018 · doi:10.1103/PhysRevE.98.022125
[24] Levernier, N.; Dolgushev, M.; Bénichou, O.; Voituriez, R.; Guérin, T., Survival probability of stochastic processes beyond persistence exponents, Nat. Commun., 10, 2990, 2019 · doi:10.1038/s41467-019-10841-6
[25] Wiese, K. J., First passage in an interval for fractional Brownian motion, Phys. Rev. E, 99, 2019 · doi:10.1103/PhysRevE.99.032106
[26] Weiss, M., Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids, Phys. Rev. E, 88, 2013 · doi:10.1103/PhysRevE.88.010101
[27] Krapf, D.; Lukat, N.; Marinari, E.; Metzler, R.; Oshanin, G.; Selhuber-Unkel, C.; Squarcini, A.; Stadler, L.; Weiss, M.; Xu, X., Spectral content of a single non-Brownian trajectory, Phys. Rev. X, 9, 2019 · doi:10.1103/PhysRevX.9.011019
[28] Sposini, V., Towards a robust criterion of anomalous diffusion, Commun. Phys., 5, 305, 2022 · doi:10.1038/s42005-022-01079-8
[29] Lévy, P., Random Functions: General Theory With Special Reference to Laplacian Random Functions vol 1, p 331, 1953, University of California Publications in Statistics · Zbl 0052.14402
[30] Samko, S. G.; Kilbas, A. A.; Marichev, A. I., Fractional Integrals and Derivatives: Theory and Applications, 1993, Taylor & Francis Books · Zbl 0818.26003
[31] Kolmogorov, A. N., Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, C. R. (Doklady) Acad. Sci. URSS (N.S.), 26, 115, 1940 · JFM 66.0552.03
[32] Mandelbrot, B.; van Ness, J. W., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 422, 1968 · Zbl 0179.47801 · doi:10.1137/1010093
[33] Ślezak, J.; Metzler, R., Minimal model of diffusion with time changing Hurst exponent, J. Phys. A: Math. Theor., 56, 35LT01, 2023 · Zbl 1538.82033 · doi:10.1088/1751-8121/acecc7
[34] Sebastian, K. L., Path integral representation for fractional Brownian motion, J. Phys. A: Math. Gen., 28, 4305, 1995 · Zbl 0873.60057 · doi:10.1088/0305-4470/28/15/011
[35] Calvo, I.; Sánchez, R., Path integral formulation of fractional Brownian motion for general Hurst exponent, J. Phys. A: Math. Theor., 41, 2008 · Zbl 1144.82028 · doi:10.1088/1751-8113/41/28/282002
[36] Wiese, K. J.; Majumdar, S. N.; Rosso, A., Perturbation theory for fractional Brownian motion in presence of absorbing boundaries, Phys. Rev. E, 83, 2011 · doi:10.1103/PhysRevE.83.061141
[37] Delorme, M.; Wiese, K. J., The maximum of a fractional Brownian motion: analytic results from perturbation theory, Phys. Rev. Lett., 115, 2015 · doi:10.1103/PhysRevLett.115.210601
[38] Delorme, M.; Wiese, K. J., Perturbative expansion for the maximum of fractional Brownian motion, Phys. Rev. E, 94, 2016 · doi:10.1103/PhysRevE.94.012134
[39] Delorme, M.; Wiese, K. J., Extreme-value statistics of fractional Brownian motion bridges, Phys. Rev. E, 94, 2016 · doi:10.1103/PhysRevE.94.052105
[40] Sadhu, T.; Delorme, M.; Wiese, K. J., Generalized arcsine laws for fractional Brownian motion, Phys. Rev. Lett., 120, 2018 · doi:10.1103/PhysRevLett.120.040603
[41] Meerson, B.; Bénichou, O.; Oshanin, G., Path integrals for fractional Brownian motion and fractional Gaussian noise, Phys. Rev. E, 106, 2022 · doi:10.1103/PhysRevE.106.L062102
[42] Bénichou, OOshanin, G2024in preparation
[43] Burlatskii, S. F.; Oshanin, G., Probability distribution for trajectories of a polymer chain segment, Theor. Math. Phys., 75, 659, 1988 · doi:10.1007/BF01036268
[44] Rouse, P. E., A theory of the linear viscoelastic properties of dilute solutions of coiling polymers, J. Chem. Phys., 21, 1272, 1953 · doi:10.1063/1.1699180
[45] Doi, M.; Edwards, S. F., The Theory of Polymer Dynamics, 1986, Clarendon
[46] Polovnikov, K.; Nechaev, S.; Tamm, M. V., Effective Hamiltonian of topologically stabilized polymer states, Soft Matter, 14, 6561, 2018 · doi:10.1039/C8SM00785C
[47] Zinn-Justin, J., Quantum Field Theory and Critical Phenomena (International Series of Monographs on Physics), 2002, Clarendon
[48] Lundgren, T.; Chiang, D., Solution of a class of singular integral equations, Q. J. Appl. Math., 24, 303, 1967 · Zbl 0148.10704 · doi:10.1090/qam/215029
[49] Yaglom, A. M., Correlation Theory of Stationary and Related Random Functions vol 1, 1987, Springer · Zbl 0685.62078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.