×

Basic convex analysis in metric spaces with bounded curvature. (English) Zbl 1539.53054

Summary: Differentiable structure ensures that many of the basics of classical convex analysis extend naturally from Euclidean space to Riemannian manifolds. Without such structure, however, extensions are more challenging. Nonetheless, in Alexandrov spaces with curvature bounded above (but possibly positive), we develop several basic building blocks. We define subgradients via projection and the normal cone, prove their existence, and relate them to the classical affine minorant property. Then, in what amounts to a simple calculus or duality result, we develop a necessary optimality condition for minimizing the sum of two convex functions.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C45 Global surface theory (convex surfaces à la A. D. Aleksandrov)
52A07 Convex sets in topological vector spaces (aspects of convex geometry)
46A03 General theory of locally convex spaces

References:

[1] Ahmadi Kakavandi, B. and Amini, M., Duality and subdifferential for convex functions on complete CAT(0) metric spaces, Nonlinear Anal., 73 (2010), pp. 3450-3455, doi:10.1016/j.na.2010.07.033. · Zbl 1200.53045
[2] Aleksandrov, A. D., Berestovskiĭ, V. N., and Nikolaev, I. G., Generalized Riemannian spaces, Russian Math. Surveys, 41 (1986), pp. 1-54, doi:10.1070/RM1986v041n03ABEH003311. · Zbl 0625.53059
[3] Alexander, S., Kapovitch, V., and Petrunin, A., Alexandrov Geometry: Foundations, preprint, https://arxiv.org/abs/1903.08539, 2023.
[4] Ambrosio, L., Gigli, N., and Savaré, G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, , Birkhäuser, Basel, 2005. · Zbl 1090.35002
[5] Ariza-Ruiz, D., Fernández-León, A., López-Acedo, G., and Nicolae, A., Chebyshev sets in geodesic spaces, J. Approx. Theory, 207 (2016), pp. 265-282, doi:10.1016/j.jat.2016.02.019. · Zbl 1347.41037
[6] Bačák, M., Convex Analysis and Optimization in Hadamard Spaces, De Gruyter, Berlin, 2014. · Zbl 1299.90001
[7] Bačák, M., Old and new challenges in Hadamard spaces, Jpn. J. Math., 18 (2023), pp. 115-168, doi:10.1007/s11537-023-1826-0. · Zbl 1536.46061
[8] Bauschke, H. H. and Combettes, P. L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed., Springer, Cham, 2017. · Zbl 1359.26003
[9] Berg, I. D. and Nikolaev, I. G., Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata, 133 (2008), pp. 195-218, doi:10.1007/s10711-008-9243-3. · Zbl 1144.53045
[10] Bergmann, R., Persch, J., and Steidl, G., A parallel Douglas-Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds, SIAM J. Imaging Sci., 9 (2016), pp. 901-937, doi:10.1137/15M1052858. · Zbl 1346.65006
[11] Bertsekas, D., Convex Optimization Algorithms, Athena Scientific, Belmont, MA, 2015. · Zbl 1347.90001
[12] Billera, L. J., Holmes, S. P., and Vogtmann, K., Geometry of the space of phylogenetic trees, Adv. in Appl. Math., 27 (2001), pp. 733-767, doi:10.1006/aama.2001.0759. · Zbl 0995.92035
[13] Boumal, N., An Introduction to Optimization on Smooth Manifolds, Cambridge University Press, Cambridge, UK, 2023. · Zbl 1532.90001
[14] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), pp. 1-122, doi:10.1561/2200000016. · Zbl 1229.90122
[15] Bridson, M. R. and Haefliger, A., Metric Spaces of Non-positive Curvature, Springer-Verlag, Berlin, 1999. · Zbl 0988.53001
[16] Burago, D., Burago, Y., and Ivanov, S., A Course in Metric Geometry, American Mathematical Society, Providence, RI, 2001. · Zbl 0981.51016
[17] Chaipunya, P., Kohsaka, F., and Kumam, P., Monotone vector fields and generation of nonexpansive semigroups in complete CAT(0) spaces, Numer. Funct. Anal. Optim., 42 (2021), pp. 989-1018, doi:10.1080/01630563.2021.1931879. · Zbl 1482.90222
[18] Clarke, F. H., Ledyaev, Y. S., Stern, R. J., and Wolenski, P. R., Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998. · Zbl 1047.49500
[19] Diminnie, C. R. and White, A. G., Remarks on strict convexity and betweenness postulates, Demonstrat. Math., 14 (1981), pp. 209-220. · Zbl 0459.46008
[20] Espínola, R. and Fernández-León, A., CAT \((k)\)-spaces, weak convergence and fixed points, J. Math. Anal. Appl., 353 (2009), pp. 410-427, doi:10.1016/j.jmaa.2008.12.015. · Zbl 1182.47043
[21] Gigli, N. and Nobili, F., A differential perspective on gradient flows on CAT \(( \kappa )\)-spaces and applications, J. Geom. Anal., 31 (2021), pp. 11780-11818, doi:10.1007/s12220-021-00701-5. · Zbl 1483.53061
[22] Jost, J., Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv., 70 (1995), pp. 659-673, doi:10.1007/BF02566027. · Zbl 0852.58022
[23] Kohlenbach, U., López-Acedo, G., and Nicolae, A., A uniform betweenness property in metric spaces and its role in the quantitative analysis of the “Lion-Man” game, Pacific J. Math., 310 (2021), pp. 181-212, doi:10.2140/pjm.2021.310.181. · Zbl 1460.49029
[24] Kuwae, K., Jensen’s inequality on convex spaces, Calc. Var. Partial Differential Equations, 49 (2014), pp. 1359-1378, doi:10.1007/s00526-013-0625-5. · Zbl 1291.53047
[25] Lang, U. and Schroeder, V., Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal., 7 (1997), pp. 535-560, doi:10.1007/s000390050018. · Zbl 0891.53046
[26] Li, C., López, G., and Martín-Márquez, V., Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. Lond. Math. Soc. (2), 79 (2009), pp. 663-683, doi:10.1112/jlms/jdn087. · Zbl 1171.58001
[27] Li, C., López, G., Martín-Márquez, V., and Wang, J.-H., Resolvents of set-valued monotone vector fields in Hadamard manifolds, Set-Valued Var. Anal., 19 (2011), pp. 361-383, doi:10.1007/s11228-010-0169-1. · Zbl 1239.47043
[28] Li, C., S. Mordukhovich, B., Wang, J., and Yao, J.-C., Weak sharp minima on Riemannian manifolds, SIAM J. Optim., 21 (2011), pp. 1523-1560, doi:10.1137/09075367X. · Zbl 1236.49089
[29] S. Louzeiro, M., Bergmann, R., and Herzog, R., Fenchel duality and a separation theorem on Hadamard manifolds, SIAM J. Optim., 32 (2022), pp. 854-873, doi:10.1137/21M1400699. · Zbl 07534676
[30] Mayer, U., Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom., 6 (1998), pp. 199-253, doi:10.4310/CAG.1998.v6.n2.a1. · Zbl 0914.58008
[31] Mordukhovich, B. S., Variational Analysis and Generalized Differentiation, I. Basic Theory, Springer-Verlag, Berlin, 2006.
[32] Mordukhovich, B. S. and Nam, N. M., Convex Analysis and Beyond. Volume 1: Basic Theory, Springer, Cham, 2022. · Zbl 1506.90001
[33] Movahedi, M., Behmardi, D., and Hosseini, S., On the density theorem for the subdifferential of convex functions on Hadamard spaces, Pacific J. Math., 276 (2015), pp. 437-447, doi:10.2140/pjm.2015.276.437. · Zbl 1321.53046
[34] Nicolae, A., Asymptotic behavior of averaged and firmly nonexpansive mapping in geodesic spaces, Nonlinear Anal., 87 (2013), pp. 102-115, doi:10.1016/j.na.2013.03.018. · Zbl 1358.54033
[35] Nikolaev, I., The tangent cone of an Aleksandrov space of curvature \(\le k\), Manuscripta Math., 86 (1995), pp. 137-147, doi:10.1007/BF02567983. · Zbl 0822.53043
[36] Ohta, S.-I., Convexities of metric spaces, Geom. Dedicata, 125 (2007), pp. 225-250, doi:10.1007/s10711-007-9159-3. · Zbl 1140.52001
[37] Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, NJ, 1970. · Zbl 0193.18401
[38] Rockafellar, R. T. and Wets, R. J.-B., Variational Analysis, Springer-Verlag, Berlin, 1998. · Zbl 0888.49001
[39] Smith, S. T., Optimization techniques on Riemannian manifolds, in Hamiltonian and Gradient Flows, Algorithms and Control, , AMS, Providence, RI, 1994, pp. 113-136. · Zbl 0816.49032
[40] Sra, S., Nowozin, S., and Wright, S. J., Optimization for Machine Learning, MIT Press, Cambridge, MA, 2011.
[41] Streets, J., The consistency and convergence of K-energy minimizing movements, Trans. Amer. Math. Soc., 368 (2016), pp. 5075-5091, doi:10.1090/tran/6508. · Zbl 1334.53072
[42] Udrişte, C., Convex Functions and Optimization Methods on Riemannian Manifolds, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994. · Zbl 0932.53003
[43] Zhang, H. and Sra, S., First-order methods for geodesically convex optimization, in Proceedings of the 29th Annual Conference on Learning Theory (COLT), , 2016, pp. 1617-1638.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.