×

Chebyshev sets in geodesic spaces. (English) Zbl 1347.41037

A subset \(C\) of a metric space \((X,d)\) is a Chebyshev set if each point in \(X\) has a unique closest point in \(C\). With the added structure for \((X,d)\) being a normed linear space questions involving the convexity of \(C\) become central (as well as questions about the smoothness of the unit ball of \(X\)). It is an open question if every Chebyshev set in a Hilbert space (even in a separable Hilbert space) is convex. It is known that under a variety of conditions, many related to compactness (e.g., \(X\) is finite dimensional) that \(C\) is convex. There also exists an example of a non-convex Chebyshev set in an incomplete, inner-product space.
This paper proves and catalogs analogous conditions related to the convexity of Chebyshev sets when \((X,d)\) is generalized from a linear space to a geodesic metric spaces with bounded curvature.
\((X,d)\) is a geodesic space if, for every \(x\) and \(y\) in \(X\), there is a unique continuous mapping (called the geodesic connecting \(x\) and \(y\)), \(c(t)\), of \([0,1]\) into \(X\) such that \(c(0) = x\), \(c(1) = y\) and \(d(c(s), c(t)) = |t-s|\) for \(0 \leq s \leq t \leq 1\).
A set, \(C\), is called convex if for every \(x\) and \(y\) in \(C\), \(C\) contains the geodesic connecting \(x\) and \(y\). A condition on triangles composed of geodesics defines bounded curvature of \((X,d)\).

MSC:

41A52 Uniqueness of best approximation
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
Full Text: DOI

References:

[1] Alexandrov, A. D., A theorem on triangles in a metric space and some applications, Tr. Mat. Inst. Steklova, 38, 5-23 (1951) · Zbl 0049.39501
[2] Ariza-Ruiz, D.; Li, C.; López-Acedo, G., The Schauder fixed point theorem in geodesic spaces, J. Math. Anal. Appl., 417, 345-360 (2014) · Zbl 1305.54047
[3] Aronszajn, N.; Smith, K. T., Invariant subspaces of completely continuous operators, Ann. of Math., 60, 345-350 (1954) · Zbl 0056.11302
[4] Asplund, E., Chebyshev sets in Hilbert space, Trans. Amer. Math. Soc., 144, 235-240 (1969) · Zbl 0187.05504
[5] Bačák, M., (Convex Analysis and Optimization in Hadamard Spaces. Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series in Nonlinear Analysis and Applications, vol. 22 (2014), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin) · Zbl 1299.90001
[6] Bestvina, M., \(R\)-trees in topology, geometry, and group theory, (Handbook of Geometric Topology (2002), North-Holland: North-Holland Amsterdam), 55-91 · Zbl 0998.57003
[7] Braess, D., Nonlinear Approximation Theory (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0656.41001
[8] Bridson, M. R.; Haefliger, A., Metric Spaces of Non-positive Curvature (1999), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0988.53001
[9] Bunt, N. H., Bitdrage tot de theorie der konvekse puntverzamelingen (1934), Univ. of Groningen: Univ. of Groningen Amsterdam, (Thesis) · JFM 60.0673.02
[10] Burago, D.; Burago, Y.; Ivanov, S., (A Course in Metric Geometry. A Course in Metric Geometry, Graduate Studies in Math., vol. 33 (2001), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0981.51016
[11] Busemann, H., Note on a theorem on convex sets, Math. Tidsskr. B, 32-44 (1947) · Zbl 0040.38403
[13] Deutsch, F., The convexity of Chebyshev sets in Hilbert spaces, (Rassias, Th. M.; Srivastava, H. M.; Yanushauskas, A., Topics in Polynomial of One and Several Variables and their Applications (1993), World Scientific), 143-150 · Zbl 0859.41027
[14] Deutsch, F., Best Approximation in Inner Product Spaces (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0980.41025
[15] Efimov, N. V.; Stechkin, S. B., Some properties of Chebyshev sets, Dokl. Akad. Nauk SSSR, 118, 17-19 (1958) · Zbl 0081.16402
[16] Efimov, N. V.; Stechkin, S. B., Approximative compactness and Chebyshev sets, Sov. Math. Dokl., 2, 1226-1228 (1961) · Zbl 0103.08101
[17] Espínola, R.; Fernández-León, A., \( \operatorname{CAT}(k)\)-spaces, weak convergence and fixed points, J. Math. Anal. Appl., 353, 410-427 (2009) · Zbl 1182.47043
[18] Espínola, R.; Li, C.; López, G., Nearest and farthest points in spaces of curvature bounded below, J. Approx. Theory, 162, 1364-1380 (2010) · Zbl 1193.53168
[19] Fernández-León, A.; Nicolae, A., Averaged alternating reflections in geodesic spaces, J. Math. Anal. Appl., 402, 558-566 (2013) · Zbl 1263.53071
[20] Goebel, K.; Reich, S., (Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Pure and Applied Mathematics (1984), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York, Basel) · Zbl 0537.46001
[21] Johnson, G., A nonconvex set which has the unique nearest point property, J. Approx. Theory, 51, 289-332 (1987) · Zbl 0637.41033
[22] Jost, J., Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv., 70, 659-673 (1995) · Zbl 0852.58022
[23] Klee, V., Convexity of Chebyshev sets, Math. Ann., 142, 292-304 (1961) · Zbl 0091.27701
[24] Koshcheev, V. A., The connectivity and approximative properties of sets in linear normed spaces, Mat. Zametki, 17, 193-204 (1975) · Zbl 0327.41029
[25] Kristály, A.; Repovs, D., Metric projections versus non-positive curvature, Differential Geom. Appl., 31, 602-610 (2013) · Zbl 1319.53087
[26] Lim, T. C., Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60, 179-182 (1976) · Zbl 0346.47046
[27] Naor, A.; Silberman, L., Poincaré inequalities, embeddings, and wild groups, Compos. Math., 147, 1546-1572 (2011) · Zbl 1267.20057
[28] Ohta, S.-I., Convexities of metric spaces, Geom. Dedicata, 125, 225-250 (2007) · Zbl 1140.52001
[29] Phelps, R. R., Convex sets and nearest points, Proc. Amer. Math. Soc., 8, 790-797 (1957) · Zbl 0078.35701
[30] Pia̧tek, B., Viscosity iteration in \(\operatorname{CAT}(\kappa)\) spaces, Numer. Funct. Anal. Optim., 34, 1245-1264 (2013) · Zbl 1291.47058
[31] Riesz, F., Zur theorie des Hilbertschen raumes, Acta Sci. Math. (Szeged), 7, 34-38 (1934) · JFM 60.0325.01
[32] Singer, I., Some remarks on approximative compactness, Rev. Roumaine Math. Pures Appl., 9, 167-177 (1964) · Zbl 0166.39405
[33] Singer, I., (Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Grundlehren Math. Wiss., vol. 171 (1970), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York) · Zbl 0197.38601
[34] Valentine, F. A., Convex Sets (1964), McGraw-Hill: McGraw-Hill New York · Zbl 0129.37203
[35] Vlasov, L. P., Chebyshev sets in Banach spaces, Sov. Math. Dokl., 2, 1373-1374 (1961) · Zbl 0098.30404
[36] Vlasov, L. P., Chebyshev sets and approximately convex sets, Math. Notes Acad. Sci. USSR, 2, 600-605 (1967) · Zbl 0159.17903
[37] Vlasov, L. P., On Chebyshev sets, Sov. Math. Dokl., 8, 401-404 (1967) · Zbl 0157.43703
[38] Vlasov, L. P., Approximative properties of sets in normed linear spaces, Russian Math. Surveys, 28, 1-66 (1973) · Zbl 0293.41031
[39] Walter, R., On the metric projection onto convex sets in Riemannian spaces, Arch. Math., 25, 91-98 (1974) · Zbl 0311.53054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.