×

The quandle of the trefoil knot as the Dehn quandle of the torus. (English) Zbl 1193.57004

A quandle is an algebraic structure consisting of a set with a self-distributive right-invertible binary operation under which every element is idempotent. In this paper, the authors define an isomorphism between the fundamental quandle of the trefoil knot and the Dehn quandle of the torus. The quandle of the long trefoil is considered in terms of cord quandles, and an additional isomorphism between the fundamental quandle of the trefoil knot and a cord quandle on the 4-punctured 2-sphere is given.

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M99 General low-dimensional topology
17A99 General nonassociative rings

References:

[1] J.S. Birman: Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82 , Princeton Univ. Press, Princeton, N.J., 1974. · Zbl 0305.57013
[2] G. Burde and H. Zieschang: Knots, second edition, de Gruyter Studies in Mathematics 5 , Walter de Gruyter & Co., 2003.
[3] M. Eisermann: Homological characterization of the unknot , J. Pure Appl. Algebra 177 (2003), 131-157. · Zbl 1013.57002 · doi:10.1016/S0022-4049(02)00068-3
[4] R. Fenn and C. Rourke: Racks and links in codimension two , J. Knot Theory Ramifica-tions 1 (1992), 343-406, http://www.maths.sussex.ac.uk/Staff/RAF/Maths/ racks.ps. · Zbl 0787.57003 · doi:10.1142/S0218216592000203
[5] R. Fenn, C. Rourke and B. Sanderson: James bundles and applications , preprint, http:// www.maths.warwick.ac.uk/ cpr/ftp/james.ps. · Zbl 1055.55005 · doi:10.1112/S0024611504014674
[6] D. Joyce: A classifying invariant of knots: the knot quandle , J. Pure Appl. Algebra 23 (1982), 37-65. · Zbl 0474.57003 · doi:10.1016/0022-4049(82)90077-9
[7] S. Kamada and Y. Matsumoto: Certain racks associated with the braid groups ; in Knots in Hellas ’98 (Delphi), World Sci. Publ., River Edge, NJ., 2000, 118-130. · Zbl 1003.57022
[8] A.Ya. Khinchin: Continued Fractions, translated from the third (1961) Russian edition, reprint of the 1964 translation, Dover, Mineola, NY, 1997.
[9] S. Matveev: Distributive grupoids in knot theory , Math. USSR Sbornik 47 (1984), 73-83. · Zbl 0523.57006 · doi:10.1070/SM1984v047n01ABEH002630
[10] E.A. Navas and S. Nelson: On symplectic quandles , Osaka J. Math. 45 (2008), 973-985, http://front.math.ucdavis.edu/0703.5727. · Zbl 1168.57011
[11] M. Niebrzydowski and J.H. Przytycki: Burnside kei , Fund. Math. 190 (2006), 211-229, http://front.math.ucdavis.edu/math.GT/0601004. · Zbl 1100.57011 · doi:10.4064/fm190-0-8
[12] T. Ohtsuki: Quandles ; in Invariants of Knots and 3-Manifolds (Kyoto, 2001), Geom. Topol. Monogr. 4 , Geom. Topol. Publ., Coventry, 2002, 455-465, http://front.math.ucdavis.edu/ math.GT/0406190.
[13] H. Ryder: An algebraic condition to determine whether a knot is prime , Math. Proc. Cambridge Philos. Soc. 120 (1996), 385-389. · Zbl 0871.57009 · doi:10.1017/S0305004100074958
[14] D. Yetter: Quandles and Lefschetz fibrations , preprint, http://front.math.ucdavis. edu/math.GT/0201270. · Zbl 1051.57003
[15] D. Yetter: Quandles and monodromy , J. Knot Theory Ramifications 12 (2003), 523-541. · Zbl 1051.57003 · doi:10.1142/S0218216503002597
[16] J. Zablow: Loops, waves and an algebra for Heegaard splittings , Ph.D. thesis, City University of New York (1999).
[17] J. Zablow: Loops and disks in surfaces and handlebodies , J. Knot Theory Ramifications 12 (2003), 203-223. · Zbl 1032.57007 · doi:10.1142/S0218216503002391
[18] J. Zablow: Talk given in January 2007 in New Orleans , AMS special session.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.