×

On symplectic quandles. (English) Zbl 1168.57011

Quandles are non-associative algebraic structures whose axioms may be understood as transcriptions of the Reidemeister moves. A typical example is a group with quandle product \(*\) given by conjugation, i.e., \(x*y =y^{-1}xy\). This paper is about symplectic quandles. These quandles are also modules equipped with an antisymmetric bilinear form; they were already considered in [D. N. Yetter, J. Knot Theory Ramifications 12, No. 4, 523–541 (2003; Zbl 1051.57003)].
The main result of the paper under review shows that every symplectic quandle over a field (of characteristic other than two if it is not finite) is almost connected, that is, it is a disjoint union of a trivial quandle and a connected quandle. Indeed, connected quandles are of particular interest for defining knot invariants since knot quandles are always connected. The paper ends introducing a new family of enhanced quandle counting invariants, based on finite symplectic quandles.

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
55M25 Degree, winding number
17D99 Other nonassociative rings and algebras

Citations:

Zbl 1051.57003

References:

[1] N. Andruskiewitsch and M. Graña: From racks to pointed Hopf algebras , Adv. Math. 178 (2003), 177–243. · Zbl 1032.16028 · doi:10.1016/S0001-8708(02)00071-3
[2] W.A. Adkins and S.H. Weintraub: Algebra, an approach via module theory, Graduate Texts in Mathematics 136 , Springer, New York, 1992. · Zbl 0768.00003
[3] E. Brieskorn: Automorphic sets and braids and singularities ; in Braids (Santa Cruz, CA, 1986), Contemp. Math. 78 , Amer. Math. Soc., Providence, RI, 1988, 45–115. · Zbl 0716.20017
[4] J.S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito: Quandle cohomology and state-sum invariants of knotted curves and surfaces , Trans. Amer. Math. Soc. 355 (2003), 3947–3989. JSTOR: · Zbl 1028.57003 · doi:10.1090/S0002-9947-03-03046-0
[5] G. Ehrman, A. Gurpinar, M. Thibault and D.N. Yetter: Toward a classification of finite quandles , · Zbl 1148.57018 · doi:10.1142/S0218216508006270
[6] R. Fenn and C. Rourke: Racks and links in codimension two , J. Knot Theory Ramifications 1 (1992), 343–406. · Zbl 0787.57003 · doi:10.1142/S0218216592000203
[7] D. Joyce: A classifying invariant of knots, the knot quandle , J. Pure Appl. Algebra 23 (1982), 37–65. · Zbl 0474.57003 · doi:10.1016/0022-4049(82)90077-9
[8] L.H. Kauffman and V.O. Manturov: Virtual biquandles , Fund. Math. 188 (2005), 103–146. · Zbl 1088.57006 · doi:10.4064/fm188-0-6
[9] S.V. Matveev: Distributive groupoids in knot theory , Math. USSR, Sb. 47 (1984), 73–83. · Zbl 0523.57006 · doi:10.1070/SM1984v047n01ABEH002630
[10] S. Nelson: Classification of finite Alexander quandles , Topology Proc. 27 (2003), 245–258. · Zbl 1066.57019
[11] S. Nelson: A polynomial invariant of finite quandles , J. Algebra Appl. 7 (2008), 263–273. · Zbl 1152.57015 · doi:10.1142/S0219498808002801
[12] S. Nelson and C.-Y. Wong: On the orbit decomposition of finite quandles , J. Knot Theory Ramifications 15 (2006), 761–772. · Zbl 1105.57006 · doi:10.1142/S0218216506004701
[13] M. Niebrzydowski and J.H. Przytycki: Burnside kei , Fund. Math. 190 (2006), 211–229. · Zbl 1100.57011 · doi:10.4064/fm190-0-8
[14] M. Takasaki: Abstraction of symmetric transformation, Tohoku Math J. 49 (1943), 145–207, (in Japanese).
[15] D.N. Yetter: Quandles and monodromy , J. Knot Theory Ramifications 12 (2003), 523–541. · Zbl 1051.57003 · doi:10.1142/S0218216503002597
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.