×

Green matrices associated with generalized linear polyominoes. (English) Zbl 1320.15037

Summary: A polyomino is an edge-connected union of cells in the planar square lattice. Here we consider generalized linear polyominoes; that is, the polyominoes supported by an \(n\times 2\) lattice. In this paper, we obtain the Green function and the Kirchhoff index of a generalized linear polyomino as a perturbation of a \(2n\)-path by adding weighted edges between opposite vertices. This approach deeply links generalized linear polyomino Green functions with the inverse \(M\)-matrix problem, and especially with the so-called Green matrices.

MSC:

15B99 Special matrices
05B50 Polyominoes
15A09 Theory of matrix inversion and generalized inverses
39A05 General theory of difference equations

References:

[1] Bendito, E.; Carmona, A.; Encinas, A. M., Eigenvalues, eigenfunctions and Green’s functions on a path via Chebyshev polynomials, Appl. Anal. Discrete Math., 3, 282-302 (2009) · Zbl 1257.39005
[2] Bendito, E.; Carmona, A.; Encinas, A. M.; Gesto, J. M., Characterization of symmetric \(M\)-matrices as resistive inverses, Linear Algebra Appl., 430, 1336-1349 (2009) · Zbl 1165.15019
[3] Bendito, E.; Carmona, A.; Encinas, A. M.; Gesto, J. M.; Mitjana, M., Kirchhoff indexes of a network, Linear Algebra Appl., 432, 2278-2292 (2010) · Zbl 1195.94100
[4] Bendito, E.; Carmona, A.; Encinas, A. M.; Mitjana, M., The \(M\)-matrix inverse problem for singular and symmetric Jacobi matrices, Linear Algebra Appl., 436, 1090-1098 (2012) · Zbl 1236.15008
[5] Carmona, A.; Encinas, A. M.; Mitjana, M., Discrete elliptic operators and their Green operators, Linear Algebra Appl., 442, 115-134 (2014) · Zbl 1286.35085
[6] da Fonseca, C. M.; Petronilho, J., Explicit inverses of some tridiagonal matrices, Linear Algebra Appl., 325, 7-21 (2001) · Zbl 0983.15007
[7] Gantmacher, F. P.; Krein, M. G., Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems (2002), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI, (translation based on the 1941 Russian original) · Zbl 1002.74002
[8] Golomb, S. W.; Klarner, D. A., Polyominoes, (Goodman, J. E.; O’Rourke, J., Handbook of Discrete and Computational Geometry (2004), Chapman& Hall/CRC) · Zbl 1056.52001
[9] Markham, T. L., Nonnegative matrices whose inverses are \(M\)-matrices, Proc. Amer. Math. Soc., 36, 326-330 (1972) · Zbl 0281.15016
[10] McDonald, J. J.; Nabben, R.; Neumann, M.; Schneider, H.; Tsatsomeros, M. J., Inverse tridiagonal \(Z\)-matrices, Linear Multilinear Algebra, 45, 75-97 (1998) · Zbl 0917.15016
[11] Usmani, R., Inversion of a Jacobi’s tridiagonal matrix, Linear Algebra Appl., 212/213, 413-414 (1994) · Zbl 0813.15001
[12] Yang, Y.; Zhang, H., Kirchhoff index of linear hexagonal chains, Int. J. Quantum Chem., 108, 503-512 (2008)
[13] Yarahmadi, Z.; Ashrafi, A. R.; Moradi, S., Extremal polyomino chains with respect to Zagreb indices, Appl. Math. Lett., 25, 166-171 (2012) · Zbl 1234.05135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.