×

Characterization of symmetric \(M\)-matrices as resistive inverses. (English) Zbl 1165.15019

The aim of this paper is to characterize those non-negative and not necessarily diagonally dominant matrices, whose respective inverses are irreducible Stieltjes matrices, by proving that any irreducible Stieltjes matrix is a resistive inverse. This consists in identifying any irreducible Stieltjes matrix with a positive definite Schrödinger operator on a suitable connected network. Further, a generalization of the concept of effective resistance is provided, whose properties are similar with those of standard effective resistances, and a generalized formula for the inverse of the resistance matrix is derived. Finally, a special kind of generalized inverses of positive semidefinite Schrödinger operators is studied, namely the Green operators and mainly the Moore-Penrose inverses of singular, irreducible and symmetric \(M\)-matrices.

MSC:

15B48 Positive matrices and their generalizations; cones of matrices
15A09 Theory of matrix inversion and generalized inverses
Full Text: DOI

References:

[1] Balalli, R.; Bapat, R. B., On Euclidean distance matrices, Linear Algebra Appl., 424, 108-117 (2007) · Zbl 1118.15024
[2] Bapat, R. B., Resistance matrix of a weigthed graph, MATCH Commun. Math. Comput. Chem., 50, 73-82 (2004) · Zbl 1052.05028
[3] Bapat, R. B.; Raghavan, T. E.S., Nonnegative Matrices and Applications (1997), Cambridge University Press: Cambridge University Press Cambridge, London · Zbl 0879.15015
[4] Bendito, E.; Carmona, A.; Encinas, A. M., Potential theory for Schrödinger operators on finite networks, Rev. Mat. Iberoamericana, 21, 771-818 (2005) · Zbl 1102.31011
[5] Bendito, E.; Carmona, A.; Encinas, A. M.; Gesto, J. M., Potential theory for boundary value problems on finite networks, Appl. Anal. Discrete Math., 1, 299-310 (2007) · Zbl 1199.31016
[6] Dellacherie, C.; Martínez, S.; San Martín, J., Ultrametric matrices and induced Markov chains, Adv. Appl. Math., 17, 169-183 (1996) · Zbl 0861.60077
[7] Dellacherie, C.; Martínez, S.; San Martín, J., Description of the sub-Markov kernel associated to generalized ultrametric matrices. An algorithmic approach, Linear Algebra Appl., 318, 1-21 (2000) · Zbl 0967.65054
[8] Fiedler, M., Some characterizations of symmetric inverse \(M\)-matrices, Linear Algebra Appl., 275-276, 179-187 (1998) · Zbl 0934.15026
[9] Fiedler, M., Special ultrametric matrices and graphs, SIAM J. Matrix Anal. Appl., 22, 106-113 (2000) · Zbl 0967.15013
[10] Ghosh, A.; Boyd, S.; Saberi, A., Minimizing effective resistance of a graph, SIAM Rev., 50, 37-66 (2008) · Zbl 1134.05057
[11] Gutman, I.; Xiao, W., Generalized inverse of the Laplacian matrix and some applications, Bull. Cl. Sci. Math. Nat. Sci. Math., 29, 15-23 (2004) · Zbl 1079.05055
[12] Kirkland, S. J.; Neumann, M., The \(M\)-matrix group generalized inverse problem for weighted trees, SIAM J. Matrix Anal. Appl., 19, 226-234 (1998) · Zbl 0905.05049
[13] Kirkland, S. J.; Neumann, M.; Shader, B. L., Distance in weigthed trees and group inverse of Laplacian matrices, SIAM J. Matrix Anal. Appl., 18, 827-841 (1997) · Zbl 0889.15004
[14] Martínez, S.; Michon, G.; San Martín, J., Inverses of ultrametric matrices are of Stieltjes type, SIAM J. Matrix Anal. Appl., 15, 98-106 (1994) · Zbl 0798.15030
[15] McDonald, J. J.; Neumann, M.; Schneider, H.; Tsatsomeros, M. J., Inverse \(M\)-matrix inequalities and generalized ultrametric matrices, Linear Algebra Appl., 220, 321-341 (1995) · Zbl 0824.15020
[16] Nabben, R.; Varga, R. S., A linear algebra proof that the inverse of a strictly ultrametric matrix is a strictly diagonally dominant Stieltjes matrix, SIAM J. Matrix Anal. Appl., 15, 107-113 (1994) · Zbl 0803.15020
[17] Nabben, R.; Varga, R. S., Generalized ultrametric matrices – a class of inverse \(M\)-matrices, Linear Algebra Appl., 220, 365-390 (1995) · Zbl 0828.15020
[18] Styan, G. P.H.; Subak-Sharpe, G. E., Inequalities and equalities associated with the Campbell-Youla generalized inverse of the indefinite admittance matrix of resistive networks, Linear Algebra Appl., 250, 349-370 (1997) · Zbl 0867.15003
[19] Xiao, W.; Gutman, I., Resistance distance and Laplacian spectrum, Theor. Chem. Acc., 110, 284-289 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.