×

On a family of quasimetric spaces in generalized potential theory. (English) Zbl 1495.32082

Let \(n\geq2\), \(1\leq m\leq n\), \(p>0\), and let \(\Omega\subset\mathbb C^n\) be an \(m\)-hyperconvex domain. Let \(\mathcal E_{p,m}(\Omega)\) denote Cegrell’s generalized energy class. Put \[\boldsymbol{J}_p(u,v):=\left(\int|u-v|^p(H_m(u)+H_m(v))\right)^{\frac1{p+m}}, \quad u,v\in\mathcal E_{p.m}(\Omega),\] where \(H_m\) stands for the \(m\)-Hessian operator. Let \(\mathcal M_{p,m}:=\{\mu: \mu\) is a non-negative Radon measure on \(\Omega\) such that \(H_m(u)=\mu\) for some \(u\in\mathcal E_{p,m}(\Omega)\}\). The main results of the paper are the following theorems:
– \((\mathcal E_{p,m}(\Omega), \boldsymbol{J}_p)\) is a complete quasimetric space.
– Let \(\mu\in\mathcal M_{p,m}\), \(0\leq f\), \(f_j\leq1\) be measurable functions such that \(f_j\longrightarrow f\) in \(L^1_{\mathrm{loc}}(\mu)\). Then \(\boldsymbol{J}_p(U(f_j\mu), U(f\mu))\longrightarrow0\), where \(u=U(\nu)\in\mathcal E_{p,m}(\Omega)\) stands for the unique solution to the Dirichlet problem \(H_m(u)=\nu\).
The authors discuss also the case of connected compact Kähler manifolds and generalize the above results to that case.

MSC:

32U05 Plurisubharmonic functions and generalizations
31C45 Other generalizations (nonlinear potential theory, etc.)
31E05 Potential theory on fractals and metric spaces
46E36 Sobolev (and similar kinds of) spaces of functions on metric spaces; analysis on metric spaces

References:

[1] Abdullaev, BI; Sadullaev, A., Potential theory in the class of \(m\)-subharmonic functions, Proc. Steklov Inst. Math., 279, 1, 155-180 (2012) · Zbl 1298.31010 · doi:10.1134/S0081543812080111
[2] Abdullaev, BI; Sadullaev, A., Capacities and Hessians in the class of \(m\)-subharmonic functions, Dokl. Math., 87, 1, 88-90 (2013) · Zbl 1277.32035 · doi:10.1134/S1064562413010341
[3] Åhag, P.; Czyż, R.; Phạm, HH, Concerning the energy class \(\cal{E}\) for \(0<p<1\), Ann. Polon. Math., 91, 2-3, 119-130 (2007) · Zbl 1122.32021 · doi:10.4064/ap91-2-2
[4] Åhag, P.; Czyż, R., Modulability and duality of certain cones in pluripotential theory, J. Math. Anal. Appl., 361, 2, 302-321 (2010) · Zbl 1177.31004 · doi:10.1016/j.jmaa.2009.07.013
[5] Åhag, P.; Czyż, R.; Hed, L., The geometry of \(m\)-hyperconvex domains, J. Geom. Anal., 28, 4, 3196-3222 (2018) · Zbl 1421.31016 · doi:10.1007/s12220-017-9957-2
[6] Åhag, P., Czyż, R.: Poincaré- and Sobolev– type inequalities for complex \(m\)-Hessian equations. Results Math. 75(2), Paper No. 63, 21 pp (2020) · Zbl 1441.32011
[7] Åhag, P., Czyż, R.: A characterization of the degenerate complex Hessian equations for functions with bounded \((p,m)\)-energy. Manuscript (2020), arXiv:2003.06157 · Zbl 1441.32011
[8] Åhag, P., Czyż, R.: Geodesics in the space of \(m\)-subharmonic functions with bounded energy. Manuscript (2021), arXiv:2110.02604 · Zbl 1439.32078
[9] Bedford, E.; Taylor, BA, Variational properties of the complex Monge-Ampère equation. I. Dirichlet principle, Duke Math. J., 45, 2, 375-403 (1978) · Zbl 0401.35093 · doi:10.1215/S0012-7094-78-04520-9
[10] Bedford, E.; Taylor, BA, Variational properties of the complex Monge-Ampère equation. II. Intrinsic norms, Am. J. Math., 101, 5, 1131-1166 (1979) · Zbl 0446.35025 · doi:10.2307/2374130
[11] Berman, J.; Boucksom, S.; Eyssidieux, P.; Guedj, V.; Zeriahi, A., Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math., 751, 27-89 (2019) · Zbl 1430.14083 · doi:10.1515/crelle-2016-0033
[12] Błocki, Z., Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble), 55, 5, 1735-1756 (2005) · Zbl 1081.32023 · doi:10.5802/aif.2137
[13] Calabuig, JM; Falciani, H.; Sánchez-Pérez, EA, Dreaming machine learning: Lipschitz extensions for reinforcement learning on financial markets, Neurocomputing, 398, 172-184 (2020) · doi:10.1016/j.neucom.2020.02.052
[14] Caffarelli, L.; Nirenberg, L.; Spruck, J., The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math., 155, 3-4, 261-301 (1985) · Zbl 0654.35031 · doi:10.1007/BF02392544
[15] Cegrell, U., Pluricomplex energy, Acta Math., 180, 2, 187-217 (1998) · Zbl 0926.32042 · doi:10.1007/BF02392899
[16] Cegrell, U.; Kołodziej, S., The equation of complex Monge-Ampère type and stability of solutions, Math. Ann., 334, 4, 713-729 (2006) · Zbl 1103.32019 · doi:10.1007/s00208-005-0687-6
[17] Cegrell, U.; Persson, L., An energy estimate for the complex Monge-Ampère operator, Ann. Polon. Math., 67, 1, 95-102 (1997) · Zbl 0892.32012 · doi:10.4064/ap-67-1-95-102
[18] Chern, S.S., Levine, H.I., Nirenberg, L.: Intrinsic norms on a complex manifold. 1969 Global Analysis (Papers in Honor of K. Kodaira), pp. 119-139, Univ. Tokyo Press, Tokyo · Zbl 0202.11603
[19] Czyż, R., The complex Monge-Ampère operator in the Cegrell classes, Dissertationes Math., 466, 83 (2009) · Zbl 1217.32015 · doi:10.4064/dm466-0-1
[20] Czyż, R., A note on Le-Pham’s paper-convergence in \({\cal{E}}_p\) spaces, Acta Math. Vietnam., 34, 3, 401-410 (2009) · Zbl 1257.32035
[21] Dinew, S.; Lu, H-C, Mixed Hessian inequalities and uniqueness in the class \({\cal{E}}(X,\omega, m)\), Math. Z., 279, 3-4, 753-766 (2015) · Zbl 1318.53078 · doi:10.1007/s00209-014-1392-5
[22] Di Nezza, E.; Lu, C-H, \(L^p\) metric geometry of big and nef cohomology classes, Acta Math. Vietnam., 45, 1, 53-69 (2020) · Zbl 1436.53050 · doi:10.1007/s40306-019-00343-4
[23] Gaveau, B., Méthodes de contrôle optimal en analyse complexe; résolution d’équations de Monge-Ampère, C. R. Acad. Sci. Paris Sér. A, 284, 11, A593-A596 (1977) · Zbl 0349.49039
[24] Gaveau, B., Méthodes de contrôle optimal en analyse complexe. I. Résolution d’équations de Monge-Ampère, J. Funct. Anal., 25, 4, 391-411 (1977) · Zbl 0356.35071 · doi:10.1016/0022-1236(77)90046-5
[25] Guedj, V.; Lu, H-C; Zeriahi, A., Plurisubharmonic envelopes and supersolutions, J. Differ. Geom., 113, 2, 273-313 (2019) · Zbl 1435.32041 · doi:10.4310/jdg/1571882428
[26] Heinonen, J., Lectures on Analysis on Metric Spaces. Universitext (2001), New York: Springer, New York · Zbl 0985.46008 · doi:10.1007/978-1-4613-0131-8
[27] Jäkel, F.; Schölkopf, B.; Wichmann, FA, Similarity, kernels, and the triangle inequality, J. Math. Psych., 52, 5, 297-303 (2008) · Zbl 1152.91770 · doi:10.1016/j.jmp.2008.03.001
[28] Kalina, J., Some remarks on variational properties of inhomogeneous complex Monge-Ampère equation, Bull. Polish Acad. Sci. Math., 31, 1-2, 9-14 (1983) · Zbl 0579.32027
[29] Lu, H.-C.: Complex Hessian equations. Doctoral thesis. University of Toulouse III Paul Sabatier (2012)
[30] Lu, H-C, A variational approach to complex Hessian equations in \({\mathbb{C}}^n\), J. Math. Anal. Appl., 431, 1, 228-259 (2015) · Zbl 1326.32056 · doi:10.1016/j.jmaa.2015.05.067
[31] Lu, H.-C., Nguy \(\tilde{\hat{{\rm e}}}\) n, V.-D.: Degenerate complex Hessian equations on compact Kähler manifolds. Indiana Univ. Math. J. 64(6), 1721-1745 (2015) · Zbl 1341.32033
[32] Lu, H.-C., Nguy \(\tilde{\hat{{\rm e}}}\) n, V.-D.: Complex Hessian equations with prescribed singularity on compact Kähler manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (accepted). Manuscript (2019), arXiv:1909.02469
[33] Nguy \(\tilde{\hat{{\rm e}}}\) n, V.-T.: On delta \(m\)-subharmonic functions. Ann. Polon. Math. 118(1), 25-49 (2016) · Zbl 1367.32025
[34] Nguy \(\tilde{\hat{{\rm e}}}\) n, V.-T.: ., Maximal \(m\)-subharmonic functions and the Cegrell class \({\cal{N}}_m\). Indag. Math. (N.S.) 30(4), 717-739 (2019) · Zbl 1425.32029
[35] Persson, L., A Dirichlet principle for the complex Monge-Ampère operator, Ark. Mat., 37, 2, 345-356 (1999) · Zbl 1045.34056 · doi:10.1007/BF02412219
[36] Shepard, RN, Attention and the metric structure of the stimulus space, J. Math. Psych., 1, 1, 54-87 (1964) · doi:10.1016/0022-2496(64)90017-3
[37] Xing, Y., A strong comparison principle for plurisubharmonic functions with finite pluricomplex energy, Michigan Math. J., 56, 3, 563-581 (2008) · Zbl 1161.32018 · doi:10.1307/mmj/1231770360
[38] Vinacua, A.: Nonlinear elliptic equations written in terms of functions of the eigenvalues of the complex Hessian. Doctoral thesis, New York University, (1986)
[39] Vinacua, A., Nonlinear elliptic equations and the complex Hessian, Commun. Partial Differ. Eqs., 13, 12, 1467-1497 (1988) · Zbl 0698.35061 · doi:10.1080/03605308808820584
[40] Zolotarev, VM, Metric distances in spaces of random variables and of their distributions, Mat. Sb. (N.S.), 101, 143, 416-454 (1976) · Zbl 0367.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.