×

A novel hybrid variation iteration method and eigenvalues of fractional order singular eigenvalue problems. (English) Zbl 07922451

Summary: In response to the challenges posed by complex boundary conditions and singularities in molecular systems and quantum chemistry, accurately determining energy levels (eigenvalues) and corresponding wavefunctions (eigenfunctions) is crucial for understanding molecular behavior and interactions. Mathematically, eigenvalues and normalized eigenfunctions play crucial role in proving the existence and uniqueness of solutions for nonlinear boundary value problems (BVPs). In this paper, we present an iterative procedure for computing the eigenvalues \((\mu)\) and normalized eigenfunctions of novel fractional singular eigenvalue problems, \[ D^{2\alpha} y(t) + \frac{k}{t^\alpha} D^\alpha y(t) + \mu y (t) = 0, \; 0 < t <1, \; 0 < \alpha \leq 1, \] with boundary condition, \[ y'(0)=0, \quad \geq y(1)=0, \] where \(D^\alpha, D^{2\alpha}\) represents the Caputo fractional derivative, \(k \geq 1\). We propose a novel method for computing Lagrange multipliers, which enhances the variational iteration method to yield convergent solutions. Numerical findings suggest that this strategy is simple yet powerful and effective.

MSC:

34B16 Singular nonlinear boundary value problems for ordinary differential equations
26A33 Fractional derivatives and integrals
34L16 Numerical approximation of eigenvalues and of other parts of the spectrum of ordinary differential operators
Full Text: DOI

References:

[1] Abbas, IA, Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity, Appl. Math. Model., 39, 20, 6196-6206, 2015 · Zbl 1443.74005
[2] Altıntan, D.; Uğur, Ö., Variational iteration method for Sturm-Liouville differential equations, Comput. Math. Appl., 58, 2, 322-328, 2009 · Zbl 1189.65155
[3] Attili, BS, The Adomian decomposition method for computing eigenelements of Sturm-Liouville two-point boundary value problems, Appl. Math. Comput., 168, 2, 1306-1316, 2005 · Zbl 1082.65557
[4] Attili, BS; Lesnic, D., An efficient method for computing eigenelements of Sturm-Liouville fourth-order boundary value problems, Appl. Math. Comput., 182, 2, 1247-1254, 2006 · Zbl 1107.65070
[5] Attili, BS; Syam, MI, The Homotopy perturbation method for the eigenelements of a class of two-point boundary value problems, Adv. Stud. Contemp. Math., 14, 1, 83-102, 2007 · Zbl 1131.65067
[6] Baeumer, B.; Kovács, M.; Meerschaert, MM, Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl., 55, 10, 2212-2226, 2008 · Zbl 1142.65422
[7] Chawla, MM; Shivakumar, PN, On the existence of solutions of a class of singular nonlinear two-point boundary value problems, J. Comput. Appl. Math., 19, 3, 379-388, 1987 · Zbl 0628.34018
[8] M. Dehghan, A.B. Mingarelli, Fractional Sturm-Liouville eigenvalue problems, I. Rev. Real Acad. Ciencias Exactas Físicas Nat. Ser. A 114(2), 46 (2020) · Zbl 1443.34009
[9] Dong, SH, Factorization Method in Quantum Mechanics, 2007, New York: Springer, New York · Zbl 1130.81001
[10] Fulton, CT, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinb. Sect. A, 77, 3-4, 293-308, 1977 · Zbl 0376.34008
[11] Fulton, CT, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinb. Sect. A, 87, 1-2, 1-34, 1980 · Zbl 0458.34013
[12] He, JH, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng., 167, 1-2, 57-68, 1998 · Zbl 0942.76077
[13] He, JH, Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. Methods Appl. Mech. Eng., 167, 1-2, 69-73, 1998 · Zbl 0932.65143
[14] He, JH, Variational iteration method-a kind of non-linear analytical technique: some examples, Int. J. Non-Linear Mech., 34, 4, 699-708, 1999 · Zbl 1342.34005
[15] He, JH, A short remark on fractional variational iteration method, Phys. Lett. A, 375, 38, 3362-3364, 2011 · Zbl 1252.49027
[16] He, JH; Wu, XH, Variational iteration method: new development and applications, Comput. Math. Appl., 54, 7-8, 881-894, 2007 · Zbl 1141.65372
[17] Henry, BI; Langlands, TAM; Straka, P., An introduction to fractional diffusion, Complex Physical, Biophysical and Econophysical Systems, 37-89, 2010, Singapore: World Scientific, Singapore · Zbl 1221.60047
[18] Kanth, ASVR; Aruna, K., He’s variational iteration method for treating nonlinear singular boundary value problems, Comput. Math. Appl., 60, 3, 821-829, 2010 · Zbl 1201.65142
[19] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations, 2006, Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[20] Lanczos, C., An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, 1950, Los Angeles: United States Government Press Office, Los Angeles · Zbl 0067.33703
[21] Li, C.; Zeng, F., Finite difference methods for fractional differential equations, Int. J. Bifurcation Chaos, 22, 4, 1230014, 2012 · Zbl 1258.34018
[22] Li, C.; Zeng, F., The Finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., 34, 2, 149-179, 2013 · Zbl 1267.65094
[23] Liao, S., Series solution of nonlinear eigenvalue problems by means of the Homotopy analysis method, Nonlinear Anal. Real World Appl., 10, 4, 2455-2470, 2009 · Zbl 1163.35450
[24] Lin, RM; Ng, TY, Eigenvalue and eigenvector derivatives of fractional vibration systems, Mech. Syst. Signal Process., 127, 423-440, 2019
[25] Luchko, Y., Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374, 2, 538-548, 2011 · Zbl 1202.35339
[26] Metzler, R.; Rajyaguru, A.; Berkowitz, B., Modelling anomalous diffusion in semi-infinite disordered systems and porous media, New J. Phys., 24, 12, 2022
[27] Miller, KS; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, 1993, New York: Wiley, New York · Zbl 0789.26002
[28] Nadeem, M.; He, JH, The Homotopy perturbation method for fractional differential equations: Part 2, two-scale transform, Int. J. Numer. Meth. Heat Fluid Flow, 32, 2, 559-567, 2022
[29] Nadeem, M.; He, JH; Islam, A., The Homotopy perturbation method for fractional differential equations: part 1 Mohand transform, Int. J. Numer. Meth. Heat Fluid Flow, 31, 11, 3490-3504, 2021
[30] Odibat, ZM, Approximations of fractional integrals and Caputo fractional derivatives, Appl. Math. Comput., 178, 2, 527-533, 2006 · Zbl 1101.65028
[31] Odibat, ZM, Computing eigenelements of boundary value problems with fractional derivatives, Appl. Math. Comput., 215, 8, 3017-3028, 2009 · Zbl 1180.65096
[32] Podlubny, I., An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 198, 340, 1999 · Zbl 0924.34008
[33] Ray, SS; Bera, RK, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput., 167, 1, 561-571, 2005 · Zbl 1082.65562
[34] Russell, RD; Shampine, LF, Numerical methods for singular boundary value problems, SIAM J. Numer. Anal., 12, 1, 13-36, 1975 · Zbl 0271.65051
[35] Singh, M.; Verma, AK, An effective computational technique for a class of Lane-Emden equations, J. Math. Chem., 54, 231-251, 2016 · Zbl 1349.65259
[36] Singh, M.; Verma, AK; Agarwal, RP, On an iterative method for a class of 2 point and 3 point nonlinear sbvps, J. Appl. Anal. Comput., 9, 4, 1242-1260, 2019 · Zbl 1458.34050
[37] Sobamowo, G., Nonlinear vibration analysis of single-walled carbon nanotube conveying fluid in slip boundary conditions using Variational iterative method, J. Appl. Comput. Mech., 2, 4, 208-221, 2016
[38] Soltani, LA; Shirzadi, A., A new modification of the Variational iteration method, Comput. Math. Appl., 59, 8, 2528-2535, 2010 · Zbl 1193.65150
[39] Suparmi, A.; Cari, C.; Faniandari, S., Eigen solutions of the Schrodinger equation with variable mass under the influence of the linear combination of modified Woods-Saxon and Eckart potentials in toroidal coordinate, Mol. Phys., 118, 24, 2020
[40] Taher, AHS, Highly accurate calculation of higher energy eigenvalues for the radial Schrödinger eigenproblems, Math. Comput. Simul., 218, 586-599, 2024 · Zbl 1540.65253
[41] Verma, AK; Kumar, N.; Singh, M.; Agarwal, RP, A note on variation iteration method with an application on Lane-Emden equations, Eng. Comput., 38, 10, 3932-3943, 2021
[42] Wang, KJ, A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge, Eur. Phys. J. Plus, 135, 11, 871, 2020
[43] Wang, Q., Numerical solutions for fractional KDV-Burgers equation by Adomian decomposition method, Appl. Math. Comput., 182, 2, 1048-1055, 2006 · Zbl 1107.65124
[44] Wazwaz, AM, A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems, Comput. Math. Appl., 41, 10-11, 1237-1244, 2001 · Zbl 0983.65090
[45] Wu, GC; Shi, YG; Wu, KT, Adomian decomposition method and non-analytical solutions of fractional differential equations, Rom. J. Phys., 56, 7-8, 873-880, 2011
[46] Zayernouri, M.; Karniadakis, GE, Fractional Sturm-Liouville eigen-problems: theory and numerical approximation, J. Comput. Phys., 252, 495-517, 2013 · Zbl 1349.34095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.