×

Development of high vorticity structures in incompressible 3D Euler equations. (English) Zbl 1326.65136

Summary: We perform the systematic numerical study of high vorticity structures that develop in the 3D incompressible Euler equations from generic large-scale initial conditions. We observe that a multitude of high vorticity structures appear in the form of thin vorticity sheets (pancakes). Our analysis reveals the self-similarity of the pancakes evolution, which is governed by two different exponents \(e^{-t/T_{\ell}}\) and \(e^{t/T_{\omega}}\) describing compression in the transverse direction and the vorticity growth, respectively, with the universal ratio \(T_{\ell}/T_{\omega} \approx 2/3\). We relate development of these structures to the gradual formation of the Kolmogorov energy spectrum \(E_{k} \propto k^{-5/3}\), which we observe in a fully inviscid system. With the spectral analysis, we demonstrate that the energy transfer to small scales is performed through the pancake structures, which accumulate in the Kolmogorov interval of scales and evolve according to the scaling law \(\omega_{max} \propto \ell^{-2/3}\) for the local vorticity maximums \(\omega_{\max}\) and the transverse pancake scales \(\ell\).{
©2015 American Institute of Physics}

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q31 Euler equations
76B47 Vortex flows for incompressible inviscid fluids
76M22 Spectral methods applied to problems in fluid mechanics

References:

[1] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 1, 193-248 (1934) · JFM 60.0726.05
[2] Onsager, L., Statistical hydrodynamics, Nuovo Cimento, 6, 279-287 (1949)
[3] Saffman, P. G., Dynamics of vorticity, J. Fluid Mech., 106, 49-58 (1981) · Zbl 0465.76020
[4] Constantin, P., On the Euler equations of incompressible fluids, Bull. Am. Math. Soc., 44, 4, 603-622 (2007) · Zbl 1132.76009
[5] Gibbon, J. D.; Bustamante, M.; Kerr, R. M., The three-dimensional Euler equations: Singular or non-singular?, Nonlinearity, 21, T123 (2008) · Zbl 1160.35498
[6] Phillips, O. M., The scattering of gravity waves by turbulence, J. Fluid Mech., 5, 2, 177-192 (1959) · Zbl 0083.41802
[7] Hasselmann, K., Weak-interaction theory of ocean waves, Basic Dev. Fluid Dyn., 2, 117-182 (1968)
[8] Kuznetsov, E. A., Wave collapse in plasmas and fluids, Chaos, 6, 3, 381-390 (1996) · Zbl 1260.76011
[9] Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 30, 4, 299-303 (1941)
[10] Obukhov, A. M., Spectral energy distribution in a turbulent flow, Dokl. Akad. Nauk SSSR, 32, 1, 22-24 (1941)
[11] Landau, L.; Lifshitz, E., Fluid Mechanics. Course of Theoretical Physics, 6 (2013)
[12] Frisch, U., Turbulence: The Legacy of A.N. Kolmogorov (1999)
[13] Mailybaev, A. A., Blowup as a driving mechanism of turbulence in shell models, Phys. Rev. E, 87, 053011 (2013)
[14] Mailybaev, A. A., Computation of anomalous scaling exponents of turbulence from self-similar instanton dynamics, Phys. Rev. E, 86, 2, 025301 (2012)
[15] Orlandi, P.; Pirozzoli, S., Vorticity dynamics in turbulence growth, Theor. Comput. Fluid Dyn., 24, 247-251 (2010) · Zbl 1191.76059
[16] Holm, D. D.; Kerr, R. M., Transient vortex events in the initial value problem for turbulence, Phys. Rev. Lett., 88, 24, 244501 (2002)
[17] Holm, D. D.; Kerr, R. M., Helicity in the formation of turbulence, Phys. Fluids, 19, 025101 (2007) · Zbl 1146.76414
[18] Beale, J. T.; Kato, T.; Majda, A., Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., 94, 1, 61-66 (1984) · Zbl 0573.76029
[19] Constantin, P.; Fefferman, C.; Majda, A. J., Geometric constraints on potentially singular solutions for the 3-D Euler equations, Commun. Partial Differ. Equations, 21, 3-4, 559-571 (1996) · Zbl 0853.35091
[20] Deng, J.; Hou, T.; Yu, X., Improved geometric conditions for non-blowup of the 3D incompressible Euler equation, Commun. Partial Differ. Equations, 31, 2, 293-306 (2006) · Zbl 1158.76305
[21] Deng, J.; Thomas, Y. H.; Yu, X., Geometric properties and nonblowup of 3D incompressible Euler flow, Commun. Partial Differ. Equations, 30, 1-2, 225-243 (2005) · Zbl 1142.35549
[22] Chae, D., On the finite-time singularities of the 3D incompressible Euler equations, Commun. Pure Appl. Math., 60, 4, 597-617 (2007) · Zbl 1124.35048
[23] Chae, D.; Dafermos, C. M.; Pokorny, M., Incompressible Euler equations: The blow-up problem and related results, Handbook of Differential Equations: Evolutionary Equation, 4, 1-55 (2008) · Zbl 1186.35001
[24] Hou, T. Y., Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier-Stokes equations, Acta Numer., 18, 277-346 (2009) · Zbl 1422.76041
[25] Gibbon, J. D., Dynamics of scaled norms of vorticity for the three-dimensional Navier-Stokes and Euler equations, Procedia IUTAM, 7, 39-48 (2013)
[26] Kuznetsov, E. A.; Ruban, V. P., Collapse of vortex lines in hydrodynamics, J. Exp. Theor. Phys., 91, 4, 775-785 (2000)
[27] Kuznetsov, E. A.; Mikhailov, A. V., On the topological meaning of canonical Clebsch variables, Phys. Lett. A, 77, 1, 37-38 (1980)
[28] Greene, J. M.; Boratav, O. N., Evidence for the development of singularities in Euler flow, Phys. D, 107, 1, 57-68 (1997) · Zbl 0939.35145
[29] Greene, J. M.; Pelz, R. B., Stability of postulated, self-similar, hydrodynamic blowup solutions, Phys. Rev. E, 62, 6, 7982 (2000)
[30] Mailybaev, A. A., Renormalization and universality of blowup in hydrodynamic flows, Phys. Rev. E, 85, 6, 066317 (2012)
[31] Mailybaev, A. A., Renormalization group formalism for incompressible Euler equations and the blowup problem (2012)
[32] Gibbon, J. D., The three-dimensional Euler equations: Where do we stand?, Phys. D, 237, 14-17, 1894-1904 (2008) · Zbl 1143.76389
[33] Luo, G.; Hou, T. Y., Potentially singular solutions of the 3D axisymmetric Euler equations, PNAS, 111, 36, 12968-12973 (2014) · Zbl 1431.35115
[34] Larios, A.; Titi, E. S., Global regularity vs. finite-time singularities: Some paradigms on the effect of boundary conditions and certain perturbations (2014)
[35] Brachet, M. E.; Meneguzzi, M.; Vincent, A.; Politano, H.; Sulem, P. L., Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flows, Phys. Fluids A, 4, 2845-2854 (1992) · Zbl 0775.76026
[36] Pumir, A.; Siggia, E., Collapsing solutions to the 3-D Euler equations, Phys. Fluids A, 2, 220-241 (1990) · Zbl 0696.76070
[37] Ohkitani, K., A geometrical study of 3D incompressible Euler flows with Clebsch potentialsa long-lived Euler flow and its power-law energy spectrum, Phys. D, 237, 14, 2020-2027 (2008) · Zbl 1143.76392
[38] Kerr, R. M., Vortex collapse and turbulence, Fluid Dyn. Res., 36, 249-260 (2005) · Zbl 1153.76356
[39] Kerr, R. M., Evidence for a singularity of the three-dimensional, incompressible Euler equations, Phys. Fluids A, 5, 7, 1725-1746 (1993) · Zbl 0800.76083
[40] Kerr, R. M., Velocity and scaling of collapsing Euler vortices, Phys. Fluids, 17, 7, 075103 (2005) · Zbl 1187.76264
[41] Hou, T. Y.; Li, R., Computing nearly singular solutions using pseudo-spectral methods, J. Comput. Phys., 226, 1, 379-397 (2007) · Zbl 1310.76127
[42] Bustamante, M. D.; Kerr, R. M., 3D Euler about a 2D symmetry plane, Physica D, 237, 14, 1912-1920 (2008) · Zbl 1143.76387
[43] Kerr, R. M., Bounds for Euler from vorticity moments and line divergence, J. Fluid Mech., 729, R2 (2013) · Zbl 1291.76073
[44] Grauer, R.; Marliani, C.; Germaschewski, K., Adaptive mesh refinement for singular solutions of the incompressible Euler equations, Phys. Rev. Lett., 80, 19, 4177 (1998)
[45] Orlandi, P.; Pirozzoli, S.; Carnevale, G. F., Vortex events in Euler and Navier-Stokes simulations with smooth initial conditions, J. Fluid Mech., 690, 288-320 (2012) · Zbl 1241.76326
[46] Kida, S., Three-dimensional periodic flows with high-symmetry, J. Phys. Soc. Jpn., 54, 2132-2136 (1985)
[47] Boratav, O. N.; Pelz, R. B., Direct numerical simulation of transition to turbulence from a high-symmetry initial condition, Phys. Fluids, 6, 2757-2784 (1994) · Zbl 0845.76065
[48] Pelz, R. B., Symmetry and the hydrodynamic blow-up problem, J. Fluid Mech., 444, 299-320 (2001) · Zbl 1002.76095
[49] Grafke, T.; Homann, H.; Dreher, J.; Grauer, R., Numerical simulations of possible finite time singularities in the incompressible Euler equations: Comparison of numerical methods, Physica D, 237, 14, 1932-1936 (2008) · Zbl 1143.76515
[50] Hou, T. Y.; Li, R., Blowup or no blowup? The interplay between theory and numerics, Physica D, 237, 14, 1937-1944 (2008) · Zbl 1143.76390
[51] Cichowlas, C.; Bonaïti, P.; Debbasch, F.; Brachet, M., Effective dissipation and turbulence in spectrally truncated Euler flows, Phys. Rev. Lett., 95, 26, 264502 (2005)
[52] Kuznetsov, E. A.; Ruban, V. P., Hamiltonian dynamics of vortex lines in hydrodynamic-type systems, J. Exp. Theor. Phys. Lett., 67, 12, 1076-1081 (1998)
[53] Kuznetsov, E. A.; Ruban, V. P., Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems, Phys. Rev. E, 61, 1, 831-841 (2000)
[54] Kuznetsov, E. A.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. J., Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence, Phys. Fluids, 19, 10, 105110 (2007) · Zbl 1182.76415
[55] Kudryavtsev, A. N.; Kuznetsov, E. A.; Sereshchenko, E. V., Statistical properties of freely decaying two-dimensional hydrodynamic turbulence, JETP Lett., 96, 11, 699-705 (2013)
[56] Pullin, D. I.; Saffman, P. G., Vortex dynamics in turbulence, Annu. Rev. Fluid Mech., 30, 1, 31-51 (1998) · Zbl 1398.76084
[57] Lundgren, T. S., Strained spiral vortex model for turbulent fine structure, Phys. Fluids (1958-1988), 25, 12, 2193-2203 (1982) · Zbl 0536.76034
[58] Gilbert, A. D., A cascade interpretation of Lundgrens stretched spiral vortex model for turbulent fine structure, Phys. Fluids A, 5, 11, 2831-2834 (1993) · Zbl 0791.76041
[59] Kuznetsov, E. A., Breaking of vortex and magnetic field lines in hydrodynamics and MHD, AIP Conf. Proc., 703, 1, 16-25 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.