×

Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier-Stokes equations. (English) Zbl 1422.76041

Summary: Whether the 3D incompressible Euler and Navier-Stokes equations can develop a finite-time singularity from smooth initial data with finite energy has been one of the most long-standing open questions. We review some recent theoretical and computational studies which show that there is a subtle dynamic depletion of nonlinear vortex stretching due to local geometric regularity of vortex filaments. We also investigate the dynamic stability of the 3D Navier-Stokes equations and the stabilizing effect of convection. A unique feature of our approach is the interplay between computation and analysis. Guided by our local non-blow-up theory, we have performed large-scale computations of the 3D Euler equations using a novel pseudo-spectral method on some of the most promising blow-up candidates. Our results show that there is tremendous dynamic depletion of vortex stretching. Moreover, we observe that the support of maximum vorticity becomes severely flattened as the maximum vorticity increases and the direction of the vortex filaments near the support of maximum vorticity is very regular. Our numerical observations in turn provide valuable insight, which leads to further theoretical breakthrough. Finally, we present a new class of solutions for the 3D Euler and Navier-Stokes equations, which exhibit very interesting dynamic growth properties. By exploiting the special nonlinear structure of the equations, we prove nonlinear stability and the global regularity of this class of solutions.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
35Q31 Euler equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35B44 Blow-up in context of PDEs
35B35 Stability in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI

References:

[1] Ladyzhenskaya, Mathematical Problems of the Dynamics of Viscous Incompressible Fluids (1970) · Zbl 0215.29004
[2] DOI: 10.1137/050639314 · Zbl 1130.76053 · doi:10.1137/050639314
[3] DOI: 10.1016/j.aim.2005.05.001 · Zbl 1100.35084 · doi:10.1016/j.aim.2005.05.001
[4] DOI: 10.1007/s002090000130 · Zbl 0970.35099 · doi:10.1007/s002090000130
[5] DOI: 10.4007/annals.2007.166.245 · Zbl 1151.35074 · doi:10.4007/annals.2007.166.245
[6] DOI: 10.1016/0167-2789(93)90195-7 · Zbl 0789.76013 · doi:10.1016/0167-2789(93)90195-7
[7] DOI: 10.1002/cpa.3160350604 · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[8] DOI: 10.1016/0167-2789(89)90151-6 · doi:10.1016/0167-2789(89)90151-6
[9] Boyd, Chebyshev and Fourier Spectral Methods (2000)
[10] DOI: 10.1063/1.1905183 · Zbl 1187.76264 · doi:10.1063/1.1905183
[11] DOI: 10.1063/1.868166 · Zbl 0845.76065 · doi:10.1063/1.868166
[12] DOI: 10.1063/1.858849 · Zbl 0800.76083 · doi:10.1063/1.858849
[13] DOI: 10.1007/BF01212349 · Zbl 0573.76029 · doi:10.1007/BF01212349
[14] Iskauriaza, Uspekhi Mat. Nauk 58 pp 3– (2003) · doi:10.4213/rm609
[15] Babin, Indiana Univ. Math. J. 50 pp 1– (2001) · Zbl 1013.35065 · doi:10.1512/iumj.2001.50.2155
[16] DOI: 10.1080/03605300802108057 · Zbl 1146.76010 · doi:10.1080/03605300802108057
[17] DOI: 10.1016/j.physd.2008.01.018 · Zbl 1143.76390 · doi:10.1016/j.physd.2008.01.018
[18] DOI: 10.1016/j.jcp.2007.04.014 · Zbl 1310.76127 · doi:10.1016/j.jcp.2007.04.014
[19] DOI: 10.1007/s00332-006-0800-3 · Zbl 1370.76015 · doi:10.1007/s00332-006-0800-3
[20] DOI: 10.1002/cpa.20212 · Zbl 1138.35077 · doi:10.1002/cpa.20212
[21] Hou, Discrete Contin. Dyn. Syst. 12 pp 1– (2005)
[22] DOI: 10.1002/cpa.20254 · Zbl 1171.35095 · doi:10.1002/cpa.20254
[23] DOI: 10.1007/s00220-008-0689-9 · Zbl 1176.35130 · doi:10.1007/s00220-008-0689-9
[24] DOI: 10.1103/PhysRevLett.80.4177 · doi:10.1103/PhysRevLett.80.4177
[25] DOI: 10.1103/PhysRevLett.67.3511 · doi:10.1103/PhysRevLett.67.3511
[26] DOI: 10.1007/s002110050019 · Zbl 0791.65080 · doi:10.1007/s002110050019
[27] DOI: 10.1002/cpa.3160410404 · Zbl 0632.76034 · doi:10.1002/cpa.3160410404
[28] DOI: 10.1017/S002211209500351X · Zbl 0854.76019 · doi:10.1017/S002211209500351X
[29] DOI: 10.1017/S0022112093000291 · Zbl 0781.76028 · doi:10.1017/S0022112093000291
[30] Deng, Methods Appl. Anal. 13 pp 157– (2006)
[31] Serrin, Nonlinear Problems pp 69– (1963)
[32] DOI: 10.1080/03605300500358152 · Zbl 1158.76305 · doi:10.1080/03605300500358152
[33] DOI: 10.1007/BF00253344 · Zbl 0106.18302 · doi:10.1007/BF00253344
[34] Raugel, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar XI pp 205– (1994)
[35] DOI: 10.1081/PDE-200044488 · Zbl 1142.35549 · doi:10.1081/PDE-200044488
[36] DOI: 10.1002/cpa.3160380605 · Zbl 0615.76029 · doi:10.1002/cpa.3160380605
[37] DOI: 10.1002/(SICI)1097-0312(199803)51:33.0.CO;2-A · doi:10.1002/(SICI)1097-0312(199803)51:33.0.CO;2-A
[38] LeVeque, Numerical Method for Conservation Laws (1992) · doi:10.1007/978-3-0348-8629-1
[39] Raugel, Turbulence in Fluid Flows: A Dynamical Systems Approach 55 pp 137– (1993) · doi:10.1007/978-1-4612-4346-5_9
[40] Constantin, Comm. Partial Differential Equations 21 pp 559– (1996) · Zbl 0853.35091 · doi:10.1080/03605309608821197
[41] DOI: 10.2307/2152776 · Zbl 0787.34039 · doi:10.2307/2152776
[42] Constantin, Navier–Stokes Equations (1988)
[43] DOI: 10.1063/1.857824 · Zbl 0696.76070 · doi:10.1063/1.857824
[44] DOI: 10.1137/1036004 · Zbl 0803.35106 · doi:10.1137/1036004
[45] DOI: 10.1007/BF02410664 · Zbl 0148.08202 · doi:10.1007/BF02410664
[46] DOI: 10.1007/BF01211598 · Zbl 0655.76041 · doi:10.1007/BF01211598
[47] DOI: 10.1103/PhysRevE.55.1617 · doi:10.1103/PhysRevE.55.1617
[48] Chorin, A Mathematical Introduction to Fluid Mechanics (1993) · doi:10.1007/978-1-4612-0883-9
[49] Majda, Vorticity and Incompressible Flow (2002)
[50] DOI: 10.1007/BF01208714 · Zbl 0494.76024 · doi:10.1007/BF01208714
[51] DOI: 10.1007/s002090100317 · Zbl 0992.35068 · doi:10.1007/s002090100317
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.